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Abstract. A major challenge in the classification of complex data, that
requires the combination of several processing steps, is the selection of the
optimal algorithms for preprocessing and classification. Here, we present
three steps to face this problem. First, we introduce a generalized model
for Support Vector Machine (SVM) variants which generates both unary
and online classifiers. This model improves the understanding of rela-
tionships between the variants which facilitates the choice and imple-
mentation of the classifier. Second, we propose the signal processing and
classification environment pySPACE which enables the systematic eval-
uation and comparison of algorithms. Third, we introduce an approach
called backtransformation which enables a visualization of the complete
processing chain in the the input data space and thereby allows for a
joint interpretation of preprocessing and classification to decode the de-
cision process. Finally, the benefit of combining all three approaches is
shown in an application on handwritten digit classification.
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1 Introduction

Dealing with classification tasks of complex spatiotemporal data like the elec-
troencephalogram (EEG) one major issue lies in the generation of meaningful
features. This is due to the fact that the data often consists of a superposition of
a multitude of signals, together with dynamic, and observational noise. Hence,
the data processing usually requires the combination of different preprocessing
steps additionally to a classifier. In fact, the generation of good features is often
more important than the actual classification algorithm [1]. Consequently, in
many cases expert knowledge is required in order to specify the data processing.
Furthermore, there is a very large number of processing algorithms and the in-
terplay between them is often hard to grasp. Altogether, this makes it difficult

? This work was supported by the German Federal Ministry of Economics and Tech-
nology (BMWi, grants FKZ 50 RA 1012 and FKZ 50 RA 1011).



to automize the process of optimizing the data processing chain to get the best
preprocessing and classification. In this paper, we present three related tools to
make this process easier.

Due to the ever-growing number of classification algorithms, it is difficult to
decide which ones to consider. Knowledge about the relations between the clas-
sifiers facilitates the choice and implementation of classifiers. As such, instead
of further specializing existing classifiers we take a unifying view. Considering
only the variants of the SVM [2–5] we developed the following general concepts
building connections between these classifiers. The first concept, called relative
margin [6, 7], enables a connection of SVM and regularized Fisher’s linear dis-
criminant (RFLD) [8]. The second concept, the zero separation approach, allows
to define unary classifiers with the help of binary classifiers by taking the origin
as a second class. Third, the single iteration approach transfers batch learning
classifiers to online classifiers. If the batch algorithm is repeatedly iterating over
the training samples to update a linear classification function, an online learning
algorithm can be generated by performing this update only once with each in-
coming sample. Knowing these connections simplifies the implementation of the
algorithms and makes it possible to transfer extensions or modifications from
one algorithm to the other connected ones. Thus, it enables to build a classifier
that fits into the individual research aims.

Nevertheless, it still required to optimize the hyperparameters and the pre-
processing. Hence, it is necessary to have “an infrastructure that makes experi-
menting with many different learners, data sources, and learning problems easy
and efficient” [1]. To solve this problem, we developed the signal processing and
classification environment pySPACE [9]. It provides functionality for a system-
atic and automated comparison of numerous algorithms and parameterizations
in a signal processing chain. Additionally, pySPACE enables the visualization of
data, algorithms, and evaluation results in a common framework.

Optimizing the processing and knowing the relations between classifiers is
not sufficient. It is also important to understand the final processing model to
find out what lies behind the data. A first step is to visualize the data and
the single processing steps, but this might not be sufficient for a complete pic-
ture, especially when dimensionality reduction algorithms are used in the pre-
processing. This is quite often the case for high-dimensional and noisy data.
Hence, a representation of the entire processing chain including both classifica-
tion and preprocessing is required. Our approach to calculate this representation
is called backtransformation. It iteratively transforms the classification function
back through the signal processing chain to generate a representation in the
same format as the input data. This representation provides weights for each
part of the data to tell which components are relevant for the complete pro-
cessing and which parts are ignored. It can be directly visualized using classical
data visualization approaches as they are used for visualizations of images, EEG
and functional magnetic resonance imaging (fMRI) data. This visualization can
then be used to support the “close collaboration between machine learning ex-
perts and application domain ones” [1]. This can help to improve the processing



and to generate new knowledge about the data. In some cases even new expert
knowledge might be generated.

In the following sections, we present our steps to improve and automatize the
process of designing a good processing chain for a classification problem (classifier
connections, pySPACE, backtransformation) including the related work in the
respective area. We conclude by giving an application example which combines
the three approaches in a unified approach.

2 Generalization: Classifier Connections

The classical SVM (C-SVM ) is motivated by the concept of maximizing the
distance between two hyperplanes, which separate positive from negative sam-
ples. This type of regularization is extended with a loss term, which allows for
samples on the opposite side of these hyperplanes. Furthermore, lifting the data
into a higher-dimensional space to make it linearly separable can be replaced
with kernels. Only the scalar product of two samples is substituted by a kernel
function. These powerful ideas and good performance results make the SVM
attractive for numerous variants. Some examples are: support vector regression
(SVR) [10], relative margin machines (RMMs) [6, 7], least squares SVM (LS-
SVM) [11], ν-SVM [12], one-class SVM (νoc-SVM) [13], support vector data
description (SVDD) [14], and passive-aggressive perceptrons (PAPs) [15]. Fur-
thermore, RFLD can be seen as an SVM variant, too [7, 8]. Some connections
between these classifiers are known. In the following sections, general concepts
for a unifying view are proposed to connect these classifiers and ease the pro-
cess of choosing a fitting classifier: relative margin, zero separation approach,
and single iteration approach. They can generate a large number of additional
variants (see Fig. 1).

2.1 Relative Margin

The relative margin concept [6] adds two additional (outer) parallel hyperplanes
to the C-SVM model with a relative distance (range R) to the decision hyper-
plane. Relative distance means that the real distance is R times 1

‖w‖ , when w is

the classification vector. Note, 2
‖w‖ is the distance between the aforementioned

maximum margin hyperplanes. If outliers at the new outer margin are treated in
the same way as in the inner margin, the model is called balanced relative mar-
gin machine (BRMM) [7]. This model is equivalent to SVR (with the dependent
variables Y = {−1, 1}) and connects SVM (R = ∞) and RFLD classification
(R = 1) [7]. A squared loss function, kernels, and implementation techniques can
be directly transferred from C-SVM to BRMM. BRMM has two hyperparame-
ters: the range R and the C-SVM complexity parameter C. For optimization it
is efficient to start with high values and iteratively decrease the values with a
pattern search algorithm [16]. To save resources, the warm start principle can
be used, to adapt the batch learning algorithms to the changed parameters [17].
With this parameter optimization, it is no longer necessary to choose between
SVM and RFLD.
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Fig. 1: Combining the approaches, introduced in Sec. 2: relative margin (vertical
arrows) to generate the balanced relative margin machine (BRMM) which is the
connection to the regularized Fisher’s linear discriminant (RFLD), single itera-
tion (horizontal arrows) to generate online classifiers like the passive-aggressive
perceptron (PAP), and the zero separation (perpendicular arrows) to generate
unary classifiers from binary ones.

2.2 Zero Separation Approach

In some applications, a second class is not of interest [18] or not enough examples
of this class can be given as in outlier and novelty detection [19]. Hence, unary
classifiers are required. In the zero separation approach a binary classifier is
transferred to an unary classifier. The origin (zero) is added as a sample of the
opposite (negative) class to the training data and the respective binary classifier
is applied [13, 20]. The application of this concept to ν-SVM results in νoc-
SVM, but it can be also applied to other classifiers like BRMM. Implementation
techniques of the original model can be directly used.

2.3 Single Iteration Approach

The C-SVM is traditionally solved with sequential minimal optimization [21]
as implemented in the LibSVM [22]. In the linear case, there are simplifica-
tions where the offset b in the decision function is omitted [17] or integrated
in the data space using homogenous coordinates [23, 24] as implemented in the
LIBLINEAR library [25]. Here, the solution algorithms iterate over single sam-
ples and update the classification function parameters w and b of the decision
function f(x) = sgn(〈w, x〉 + b) to the optimal values in relation to this sam-
ple. The single iteration approach creates a variant of a classification algorithm
by performing this update only once. This directly results in online learning



algorithms. PAPs can be derived from C-SVM with this approach [7]. Online
learning can be used to speed up the training procedure with low processing
resources or to improve algorithms in terms of run time. In some cases it can
deliver comparable performance to the original algorithm [18, 26, 27]. It is even
possible to combine batch and online learning. First, the classifier is trained on
a larger dataset with a batch learning. Then by using the single iteration ap-
proach, the connected online learning algorithm can be adapted and used in the
application.

3 Optimization: pySPACE

There are several open source signal processing and machine learning libraries.
Some important libraries are NumPy [28], SciPy [29], Modular Toolkit for Data
Processing [30], Weka [31], LibSVM [22], and Scikit-learn [32]. pySPACE also
provides a plethora of algorithms as depicted in Fig. 2 and wraps several libraries.
For finding the best processing chain, access to numerous algorithms is helpful
but only to a certain extend. In contrast to other libraries, pySPACE can be seen
as a high-level framework which provides numerous methods for both classifica-
tion and preprocessing. It automates the data processing, including loading and
storing of the data, parallel processing of numerous different processing flows,
and evaluation of the results. The interfacing to the data and algorithms is based
on configuration files and not on scripts. The folder which contains all datasets
which shall be processed, the parameters and algorithms which should be varied,
and the list of algorithms which should be applied sequentially on the data, are
the only user-defined specifications. Hence, our configuration files allow scientists
with little programming experience to use the software. The streamlined format
of a data processing configuration can be easily shared and compared even in
publications. The present approach simplifies communication between scientists
and would not be possible in the same way with scripts or graphical user inter-
faces (GUIs). The evaluation can be performed on a cluster for fast processing
and provides a result tabular with numerous metrics [33] to analyze the differ-
ences between the compared algorithms and parameterizations. pySPACE was
originally developed to allow for automatic benchmarking and tuning of EEG
data processing chains [34–36]. A summary on respective evaluations is given
in [9] as well as more details on pySPACE.

4 Decoding: Backtransformation

To understand classifiers, it is not only important to know the relations be-
tween them, but also to interpret them when they are applied on data. This
understanding might lead to an improved processing chain or even to additional
information about the data or the process which generated the data. Hence, new
expert knowledge could be generated. A straightforward approach is to visualize
the weights of the linear classification function [37, 38]. An extension to nonlinear
classifiers has been suggested in [39] based on the derivative of the classification
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Fig. 2: Overview of the more than 100 processing nodes in pySPACE [9]. They are
arranged according to processing categories (package names) and subcategories.
The size of the boxes indicates the respective number of currently available
algorithms.

function. Unfortunately, a derivative has to be calculated for every input sample
which complicates the application and interpretation. The here proposed back-
transformation concept is the extension of these methods to a complete signal
processing chain, which ends with a (linear) classification function [40]. There-
fore, the respective weights are calculated iteratively beginning with the classifier
and going back through the processing chain. The final weights have the same
format as the input data and could be visualized in the same way. Backtrans-
formation is especially attractive when a dimensionality reduction algorithm is
applied in the signal processing chain. In this case, an interpretation of the pure
classifier weights is not informative without the weights of the dimensionality
reduction algorithm. For nonlinear algorithms, a general transformation cannot
be given anymore but it is possible to apply the chain rule and calculate the
derivative of the signal processing function in the sample of interest. So for each
input sample, a weight vector is obtained describing the local importance of each
data component. Additionally to the visualization of the processing chain, back-
transformation can be used to select features, to adapt a classifier to changing
preprocessing (co-adaptation), and to enable sparse classification related to the
input data (e.g., relevant time of the observed signal [35] or number of used
sensors [34]).

5 Application Example

As a proof of concept, a classification on handwritten digit data was conducted
(MNIST [41]). The classification of the digits 0, 1, and 2 is compared. First,
the data was reduced in dimensionality with a principal component analysis
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Fig. 3: Contour plots of backtransformation weights for handwritten digit clas-
sification with different classifiers: The white and black silhouettes display an
average contour of the original data (digits 0, 1, and 2). The colored contour
plots show the respective weights in the classification process. Negative weights
(blue) are important for the classification of the first class (black silhouette) and
positive weights (red) for the second class (white silhouette). Green weights are
close to zero and do not contribute to the classification process. For the unary
classification, the second class (white) was used.

(PCA) [42] from 784 to 40 and then normalized with a standardization (zero
mean and variance of one on the given training data). For classification, a
squared loss penalization of misclassifications was used to obtain a Gaussian
loss in RFLD. RFLD, SVM, the respective SVM perceptron, and νoc-SVM were
compared. Backtransformation can summarize all three processing steps and
provides the respective weights belonging to the input data. This is visualized in
Fig. 3. The classifiers itself do only determine the 40 weights of the normalized
principal components. These weights would be difficult to interpret, but with the
given backtransformation the weighting and its correspondence to the average



shapes can be observed. As expected due to the model similarities (single itera-
tion approach) similar weight distributions were obtained for SVM and its online
learning variant (PAP). The visualizations of SVM and RFLD look similar due
to the connection with BRMM. However, for the distinction between the two
digits 0 and 2 some larger differences can be observed. The one class classifier
is different to the other classifiers as expected because it has been trained on a
single digit only. Hence, characteristics of the other class can be only marginally
observed due to the use of PCA which has been trained on both classes. This
can be seen in the second and third row: although trained on the digit 2 in both
cases, the classification results look different.

6 Conclusion

Optimizing the classification of spatiotemporal data is a difficult task which of-
ten requires expert knowledge. To ease this process especially for non-experts,
three approaches are shown in this paper to improve the design and understand-
ing of signal processing and classification with SVM variants. The pySPACE
framework was presented, to process the data, tune algorithms and their param-
eters, and to enable the communication between scientists. Several connections
between existing SVM variants have been shown and resulted in additional new
SVM variants for unary classification and online learning. Due to the connec-
tions, it is easier to understand differences and similarities between the classifier
variants and save time when implementing the classifiers. To finally interpret the
complete signal processing chain which ends with a classifier, the backtransfor-
mation approach was presented. In case of solely affine transformations, it results
in a representation of the processing chain, giving weights for each component
in the input domain, which can be directly visualized. All three approaches were
combined in an application on handwritten digit classification.

In future, the backtransformation concept should be implemented and tested
on nonlinear signal processing chains. All three introduced concepts should be
analyzed in further applications to prove their usefulness. The longterm goal is
to make pySPACE a tool for autonomous learning.

References

1. Domingos, P.: A few useful things to know about machine learning. Communica-
tions of the ACM 55(10) (2012) 78–87

2. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines
and other kernel-based learning methods. Cambridge University Press (2000)
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36. Krell, M.M., Tabie, M., Wöhrle, H., Kirchner, E.A.: Memory and Processing Ef-
ficient Formula for Moving Variance Calculation in EEG and EMG Signal Pro-
cessing. In: Proc. International Congress on Neurotechnology, Electronics and
Informatics, Vilamoura, ScitePress (2013) 41–45

37. LaConte, S., Strother, S., Cherkassky, V., Anderson, J., Hu, X.: Support vector
machines for temporal classification of block design fMRI data. NeuroImage 26(2)
(2005) 317–329

38. Blankertz, B., Lemm, S., Treder, M., Haufe, S., Müller, K.R.: Single-Trial Analysis
and Classification of ERP Components–a Tutorial. NeuroImage 56(2) (2011) 814–
825

39. Baehrens, D., Schroeter, T., Harmeling, S., Kawanabe, M., Hansen, K., Müller,
K.R.: How to Explain Individual Classification Decisions. Journal of Machine
Learning Research 11 (2010) 1803–1831

40. Krell, M.M., Straube, S.: Backtransformation: A new representation of data pro-
cessing chains with a scalar decision function. (under revision 2014)

41. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proceedings of the IEEE 86(11) (1998) 2278–2324

42. Abdi, H., Williams, L.J.: Principal component analysis. Wiley Interdisciplinary
Reviews: Computational Statistics 2(4) (2010) 433–459


