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Abstract. In the stochastic multivariate multi-armed bandit, arms gen-
erate a vector of stochastic normal rewards, one per objective, instead
of a single scalar reward. As a result, there is not only one optimal arm,
but there is a set of optimal arms (Pareto front) using Pareto dominance
relation. The goal of an agent is to trade-off between exploration and ex-
ploitation. Exploration means finding the Pareto front and exploitation
means selecting fairly or evenly the optimal arms. We propose annealing-
Pareto algorithm that trades-off between exploration and exploitation
by using a decaying parameter εt in combination with Pareto domi-
nance relation. We compare experimentally Pareto-KG, Pareto-UCB1
and annealing-Pareto on multi-objective normal distributions and we
conclude that the annealing-Pareto is the best performing algorithm.

Keywords: Multi armed bandit problem, multi objective optimization,
annealing algorithm, exploration/exploitation.

1 Introduction

The Multi-Objective Multi-Armed Bandit (MOMAB) problem is a sequential
stochastic learning problem. At each time step t, an agent pulls one arm i from
an available arm setA and receives a reward vector rrri of the arm i withD variates
(or objectives) as feedback signal. The reward vector is drawn from a normal
probability distribution vectorN(µµµi,σσσ

2
i ), where µµµi is the true mean vector and σσσ2

i

is the covariance matrix parameters of the arm i. The reward vector rrri that the
agent receives from the arm i is independent from all other arms and independent
from the past reward vectors of the selected arm i. Moreover, the mean vector
of the arm i has independent D distributions, i.e. σσσ2 is a diagonal covariance
matrix. We assume that the true mean vector and covariance matrix of each
arm i are unknown parameters to the agent. Thus, by drawing each arm i, the
agent maintains estimations of the true mean vector and the diagonal covariance
matrix (or the variance vector) which are known as µ̂µµi and σ̂σσ2

i , respectively.
The MOMAB problem has a set of Pareto optimal arms (Pareto front) A∗,

that are incomparable, i.e. can not be classified using a designed partial order
relations. The agent has not to only find the optimal arms (exploring), to mini-
mize the total Pareto loss of not pulling the optimal arms, but also has to play
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them fairly (exploiting), to minimize the total unfairness loss. This problem is
known as the trade-off between exploration and exploitation in the multi-objective
optimization [1]. At each time step t, the Pareto loss (or Pareto regret) is the
distance between the set mean of Pareto optimal arms and the mean of the
selected arm. While, the unfairness loss (or unfairness regret) is the variance
in selecting the optimal arms [2]. Thus, the total Pareto regret and the total
unfairness regrets are the cumulative summation of the Pareto and unfairness
regret over t time steps, respectively. Since, the total unfairness regret grows
exponentially on the number of time steps and does not take into account the
total number of selecting optimal arms, we propose to compute the unfairness
regret using the entropy measure [3]. The entropy unfairness regret is a measure
of disarray (or disorder) on selecting the optimal arms in the Pareto front A∗.

The Pareto front A∗ can be found for example, by using Pareto dominance
relation (or Pareto partial order relation ) which finds the Pareto front A∗ by
optimizing directly the Multi-Objective (MO) space [4]. To solve the trade-off
between exploration and exploitation problem directly in the MO space, [2] used
Upper Confidence Bound (UCB1) [5] policy and [6] used Knowledge Gradient
(KG) [7] policy in the MOMAB problem. Both UCB1 and KG policies trade-off
between exploration and exploitation by adding an exploration term (or bound)
to the estimated mean vector µ̂µµi for each arm i in each objective (or dimension)
d, d ∈ D and select the optimal arms by using Pareto dominance relation. How-
ever, the exploration bound of UCB1 for arm i requires only knowledge about
that arm, while in case of KG it also requires knowledge about the other arms.

In this paper, we propose annealing-Pareto algorithm that detects the opti-
mal arms in the multi-objective space. The annealing-Pareto controls the trade-
off between exploration and exploitation by using a decaying parameter εt, εt ∈
(0, 1) in combination with the Pareto dominance relation. The decaying parame-
ter εt has a high value at the beginning of time step t to explore all the available
arms and increase the confidence in the estimated means, however, as the time
step t increases, the εt parameter decreases to exploit the arms that have maxi-
mum estimated mean. To keep track on all the optimal arms in the Pareto front
A∗, at each time step t, the annealing-Pareto uses Pareto dominance relation.

The rest of the paper is organized as follows: In Section 2 we introduce
the multivariate normal multi-armed bandit problem. In Section 3 we present
the MOMAB algorithms for normal multivariate distributions. In Section 4 we
present the performance measure in the MOMAB problem. In Section 5 we
introduce the annealing-Pareto algorithm in normal distribution. In Section 6,
we describe the experiments set up followed by experimental results. Finally, we
conclude and discuss future work.

2 Multi Objective Normal Distributions Multi Armed
Bandits Problem

Let us consider the MOMABs problems with |A| ≥ 2 arms and with indepen-
dent D objectives per arm. At each time step t, the agent selects one arm i
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and receives a reward vector rrri. The reward vector rrri is drawn from a cor-
responding normal probability distribution N(µµµi,σσσ

2
i ) with unknown mean pa-

rameter vector µµµi, µµµi = [µ1
i , · · · , µDi ]T and unknown variance parameter vector

σσσi, σσσi = [σ1
i , · · · , σDi ]T , where T is the transpose. Thus, by drawing each arm i,

the agent maintains estimate of the mean parameter vector µ̂µµi and the variance
σ̂σσ2
i parameter vector, and computes the number of times Ni arm i is drawn. The

agent updates the estimated mean µ̂di , the estimated variance σ̂2,d
i of the selected

arm i in each dimension d, d ∈ D and the number of times Ni+1 arm i has been
selected as follows [8]:

Ni+1 = Ni + 1, µ̂di+1 = (1− 1

Ni+1
) µ̂di +

1

Ni+1
rdt+1 (1)

σ̂2,d
i+1 =

Ni+1 − 2

Ni+1 − 1
σ̂2,d
i +

1

Ni+1
(rdt+1 − µ̂di )2 (2)

where µ̂di+1 is the updated estimated mean, and σ̂2,d
i+1 is the updated estimated

variance of the arm i in the dimension d and rdt+1 is the observed reward of the
arm i in the dimension d.

When the objectives are conflicting with one another then the mean com-
ponent µdi of arm i corresponding with objective d, d ∈ D, can be better than
the component µdj of another arm j but worse if we compare the components for

another objective d′: µdi > µdj but µd
′

i < µd
′

j for objectives d and d′, respectively.
The agent has a set of optimal arms (Pareto front) A∗ which can be found by
the Pareto dominance relation (or Pareto partial order relation).

The Pareto dominance relation finds the Pareto front A∗ directly in the
multi-objective MO space [4]. It uses the following relations between the mean
vectors of two arms. We use i and j to refer to the mean vector (estimated mean
vector or true mean vector) of arms i and j, respectively:

Arm i dominates or is better than j, i � j, if there exists at least one objective
d for which id � jd and for all other objectives d′ we have id

′ � jd
′
. Arm i is

incomparable with j, i ‖ j, if and only if there exists at least one objective d for
which id � jd and there exists another objective d′ for which id

′ ≺ jd′ . Arm i is
not dominated by j, j � i, if and only if there exists at least one objective d for
which jd ≺ id. This means that either i � j or i ‖ j.

Using the above relations, Pareto front A∗, A∗ ⊂ A be the set of arms that
are not dominated by all other arms. Moreover, the optimal arms in A∗ are
incomparable with each other.

3 Multi Objective Multi Armed Bandits Algorithms in
Normal Distribution

Pareto-UCB1 [2] and Pareto-KG [6] trade-off between exploration and exploita-
tion by combination one-objective, Multi-Armed Bandits (MAB) algorithms (or
policies) with Pareto dominance relation.
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3.1 Pareto-UCB1 in Normal distribution

Pareto-UCB1 is the extension of the UCB1 policy [5] to the MOMABs. Pareto-
UCB1 plays initially each arm i once. At each time step t, it estimates the mean
vector of each of the multivariate arms i, i.e. µ̂µµi = [µ̂1

i , · · · , µ̂Di ]T and adds to each
dimension d an upper confidence bound which represents the exploration bound
ExpBdi , ExpBdi =

√
(2 ln(t 4

√
D|A∗|))/Ni in the dimension d to trade-off between

exploration and exploitation, where D is the number of objectives, |A∗| is the
number of optimal arms, and Ni is the number of times arm i has been selected.
Pareto-UCB1 uses a Pareto dominance relation, Section 2 to find the Pareto-
UCB1 optimal arm set A∗UCB1. Thus, for all the non-optimal arms k /∈ A∗UCB1

there exists a Pareto optimal arm j ∈ A∗UCB1 that is not dominated by the arms
k, i.e. µ̂µµk + ExpBExpBExpBk � µ̂µµj + ExpBExpBExpBj , where ExpBExpBExpBj , ExpBExpBExpBj = [ExpB1

j , · · · ,ExpBDj ]
is the exploration bound vector of the arm j. Pareto-UCB1 selects uniformly
randomly one of the arms in the set A∗UCB1. The idea is to select most of the
times one of the optimal arm in the Pareto front, i ∈ A∗. An arm j /∈ A∗ that is
closer to the Pareto front according to metric measure is more selected than the
arm k /∈ A∗ that is far from A∗. After pulling the chosen arm i, Pareto-UCB1,
updates the estimated mean µ̂µµi vector, the number of times arm i is chosen Ni
and computes the Pareto and the unfairness regrets.

3.2 Pareto-KG in Normal distribution

Pareto-KG is the extension of the KG policy [7] to the MOMABs. Pareto-KG
plays each arm initial Steps. At each time step t, Pareto-KG calculates an ex-
ploration bound ExpBExpBExpBi, ExpBExpBExpBi = [ExpB1

i , · · · , ExpBDi ]T for each arm i. The
exploration bound of arm i depends on the estimated mean of all arms and on
the estimated standard deviation of the arm i. The exploration bound of arm i
for dimension d (ExpBdi ) is calculated as follows:

ExpBdi = (L− t) ∗ |A|D ∗ vdi , vdi = ˆ̄σdi x

−| µ̂di − max
j 6=i, j∈A

µ̂dj

ˆ̄σdi
|

 , ∀d∈D (3)

where vdi is the index of an arm i for dimension d, L is the horizon of experiment
which is the total number of time steps, |A| is the total number of arms, and
ˆ̄σdi , ˆ̄σdi = σ̂d

i/
√
Ni is the root mean square error of an arm i for dimension d. After

computing the exploration bound for each arm, Pareto-KG sums the exploration
bound of arm a with the corresponding estimated mean. Thus, Pareto-KG selects
the optimal arms j that are not dominated by all other arms k, k ∈ |A| using
Pareto dominance relations, µ̂µµk + ExpBExpBExpBk � µ̂µµj + ExpBExpBExpBj , Section 2 Pareto-KG
chooses uniformly randomly one of the optimal arms in A∗KG, where A∗KG is the
Pareto-KG optimal arm set. After pulling the chosen arm i, Pareto-KG, updates
the estimated mean µ̂µµi, and the estimated variance σ̂σσ2

i vectors, the number of
times arm i is chosen Ni and computes the Pareto and the unfairness regrets.

Pareto-UCB1 and Pareto-KG control the trade-off between exploration and
exploitation by adding an exploration bound ExpBdi to the estimated mean µdi of
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each arm i in each objective d. The added exploration bound ExpBdi for the arm
i in the objective d by Pareto-KG depends on the estimated mean of all available
arms in the objective d and on the root mean square error ˆ̄σdi of the arm i, i.e.
each objective has different exploration bound. While, the added exploration
bound ExpBdi for the arm i in the dimension d by Pareto-UCB1 depends only
on the arm i, i.e. each objective has the same exploration bound.

4 Performance Measure

In the MOMAB, the agent has not only to find the Pareto front A∗ (or exploring
the optimal arms), but also has to play them fairly (or exploiting) the optimal
arms). As a result, there are two regret measures.

Pareto regret measure (RPareto) [2] measures the distance between a mean
vector of an arm i that is pulled at time step t and the Pareto front A∗. Pareto
regret RPareto is calculated by finding firstly the virtual distance dis∗. The vir-
tual distance dis∗ is defined as the minimum distance that is added to the mean
vector of the pulled arm µµµt at time step t in each dimension to create a virtual
mean vector µµµ∗t , µµµ

∗
t = µµµt + εεε∗ that is incomparable with all the arms in Pareto

set A∗, i.e. µµµ∗t ||µµµi ∀i∈A∗ . Where εεε∗ is a vector, εεε∗ = [dis∗,1, · · · , dis∗,D]T . Then,
the Pareto regret RPareto, RPareto = dis(µµµt,µµµ

∗
t ) = dis(εεε∗,000) is the distance be-

tween the mean vector of the virtual arm µµµ∗t and the mean vector of the pulled

arm µµµt at time step t, where dis, dis(µµµt,µµµ
∗
t ) = (

∑D
d=1(µ∗,dt − µdt )2)(1/2) is the

Euclidean distance. Thus, the regret of the Pareto front is 0 for optimal arms,
i.e. the mean of the optimal arm coincides itself.

The unfairness regret metric is the Shannon’s entropy measure [3] which is a
measure of disorder (or disarray) on the Pareto front A∗. The higher the entropy,
the higher the disorder. At time step t, the Shannon regret is RSE(t), RSE(t) =
− 1
N|A∗|(t)

∑
i∗∈A∗ pi∗(t) ln(pi∗(t)), where pi∗(t), pi∗(t) = Ni∗ (t)/N(t) is the proba-

bility of selecting an optimal arm i∗ at time step t, where Ni∗(t) is the number of
times the optimal arm i∗ has been selected and N(t) is the number of times all
arms i = 1, · · · , A have been selected at time step t, and N|A∗|(t) is the number
of times the optimal arms, i∗ = 1, · · · , |A∗| have been selected at time step t.

5 The Annealing-Pareto Algorithm

Annealing-Pareto algorithm has a specific mechanism to control the trade-off
between exploration and exploitation. It uses an exponential decay εt, εt =
εtdecay/(|A|D), where εdecay is the decay parameter and Pareto dominance relation.
At the beginning of time step t, εt has a high value to explore all the available
arms. As the time step t is increased, εt has a low value to exploit only the optimal
arms. To keep track on all the optimal arms in the Pareto front A∗, the annealing-
Pareto uses Pareto dominance relation. The decay parameter εdecay, εdecay ∈
(0, 1), when εdecay = 0 means the annealing-Pareto is a fully Pareto dominance
relation and when εdecay = 1 means the annealing-Pareto uses a fixed exponential
decay. The pseudocode of the annealing-Pareto is given in Algorithm 1.
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As initialization step, Algorithm 1 plays each arm i once to estimate the
corresponding mean vector µ̂µµi and the ε-Pareto optimal arm set A∗ε contains
all the arms in the arm set A. At each time step t, Algorithm 1 trades-off
between exploration and exploitation by using the decay parameter εdecay in
the exponential decay εt (step: 4). In each objective d, d ∈ D, the Algorithm 1
detects the optimal arm in that objective i∗,d, i∗,d = argmaxi=1,··· ,A µ̂

d
i , where µ̂di

is the estimated mean for arm i in the dimension d (step: 7). Algorithm 1 selects
all the arms in the objective d that have estimated mean between [µ̂∗,d−εt, µ̂∗,d]
and include them in the corresponding selected arm set Sd (steps: 8-12), where
µ̂∗,d, µ̂∗,d = maxi∈A µ̂

d
i is the estimated mean of the optimal arm i∗,d in the

objective d. Algorithm 1 constructs the total selected arm set S(t) at time step
t by reunion of the selected arm set (step: 14). To keep track on the Pareto front
A∗, the Algorithm 1 uses Pareto dominance relation (step: 17) on the arms j
that are elements in the previous ε-Pareto optimal arm set A∗ε (t − 1) and are
not element in the total selected arm set S(t). If the arm j is not dominated by
all other arms, then this arm will be added to the total selected arm set S(t)
(step: 18). Algorithm 1 updates its ε-Pareto optimal arm set A∗ε (t) to be the total
selected arm set S(t) (step: 21). It pulls uniformly at random one of the arms
i∗ that is an element in the ε-Pareto optimal arm set A∗ε (t) (step: 22), observes
the corresponding reward vector rrri∗ and updates its estimated mean vector µ̂µµi∗
and the number of times Ni∗ arm i∗ is selected (step: 23). Then, it calculates
the Pareto and unfairness regrets. This procedure is repeated until the end of
playing L time steps which is the horizon of an experiment.

In Fig. (1), the dynamic of the algorithm is illustrated on 2-objective 5-armed
bandit. The optimal arms a∗1, a

∗
2, and a∗3 have the means µ∗1, µ

∗
2 and µ∗3, respec-

tively. The non-optimal arms a4, and a5 have the means µ4 and µ5, respectively.
At the beginning of time step, t = 1 the total selected arm set S(t) almost con-
tains all the arms (optimal and non-optimal arms), and the ε-Pareto optimal arm
set A∗ε contains all the arms as shown in subfigure a. As the time step increases,
S(t) contains some of the optimal arms, i.e. a∗2 as shown in subfigure b and c,
therefore, to maintain all the Pareto front, the algorithm constructs its updated
ε-Pareto optimal arm set A∗ε (t) to be the set that contains the non dominated
arms (a∗1 and a∗3) in the previous A∗ε (t− 1) and the arms in the set S(t).

6 Experiments

In this section, we experimentally compare Pareto-UCB1, Pareto-KG and annealing-
Pareto. The performance measures are: 1) the cumulative average regret at each
time step which are the average of M experiments. 2) the cumulative average
unfairness at each time step which are the average of M experiments.

The number of experiments M and the horizon of each experiment L are
1000. The rewards of each arm i in each objective d, d ∈ D are drawn from
normal distribution N(µµµi,σσσ

2
i,r) where µµµi = [µ1

i , · · · , µDi ]T is the unknown true

mean and σσσ2
i,r = [σ2,1

i,r , · · · , σ
2,D
i,r ]T is the true unknown variance of the reward.

The standard deviation σdr for arms in each objective is set to 0.01, 0.1 or 1. For
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Algorithm 1 (Annealing-Pareto in Normal Distribution)

1. Input: Horizon of an experiment L; time step t; number of arms |A|; number of
objectives |D|; reward distribution r ∼ N(µµµ,σσσ2); selected arm set Sd(t) = { } ∀d;
decay parameter εdecay ∈ (0, 1).
2. Intialize: play each arm i initial steps to estimate its mean vector µ̂µµi =
[µ̂1
i , · · · ,µ̂Di ]T ; initial ε-Pareto front set A∗ε (0) = A.

3. For time step t = 1, · · · , L
4. Set the decay parameter εt = εtdecay/(|A||D|)
5. For objective d = 1, · · · , D
6. Sd(t) = {φ}
7. µ̂∗,d = max

1≤i≤A
µ̂di

8. For arm i = 1, · · · , A
9. If µ̂di ∈ [µ̂∗,d − εt, µ̂∗,d]
10. Sd(t)← {Sd(t), i}
11. End If
12. End For
13. End For
14. S(t)← S1(t) ∪ S2(t) ∪ · · · ∪ SD(t)
15. Sdifference ← A∗ε (t− 1)− S(t)
16. For arm j ∈ Sdifference do
17. If µ̂µµk � µ̂µµj , ∀k ∈ A
18. S(t)← S(t) ∪ j
19. End If
20. End For
21. A∗ε (t)← S(t)
22. Select an optimal arm i∗ uniformly, at random from A∗ε (t)
23. Observe: reward vector ri∗ , ri∗ = [r1i∗ , · · · , rDi∗ ]T ;Update: µ̂µµi∗ ; Ni∗ ← Ni∗ + 1
24. End For
25. Output: Unfairness regret; Pareto regret

a. At t = 1 b. At t > 1 c. At t >> 1

Fig. 1. The dynamic of the annealing-Pareto algorithm.

Pareto-UCB1 and the annealing-Pareto, each arm is played initially one time, i.e.
Initial = 1. Pareto-KG needs the estimated variance for each arm, σ̂σσ2

i , therefore,
each arm is played initially 2 times which is the minimum number to estimate



8 Lecture Notes in Computer Science: Authors’ Instructions

0.5 0.51 0.52 0.53 0.54 0.55 0.56 0.57
0.5

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58

Objective
1

O
b
je

c
ti
v
e

2

 

 

mean of optimal arm

mean of non optimal armµ
1

*

µ
2

*

µ
3

*

µ
4

*

µ
5

µ
6

0.49 0.5 0.51 0.52 0.53 0.54 0.55 0.56 0.57
0.49

0.5

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58

Objective
1

O
b
je

c
ti
v
e

2

 

 

mean of optimal arm

mean of non optimal arm

µ
10

*

µ
1

*

µ
2

*

µ
3

*

µ
5

*

µ
6

*

µ
4

*

µ
7

*µ
8

*
µ

9

*

µ
13

µ
15

µ
16

µ
20

µ
19

µ
18

µ
12

µ
11

µ
14

µ
17

Fig. 2. Non-convex and convex mean vector set. Left figure shows a non-convex set
with 2-objective, 6-armed. Right figure shows a convex set with 2-objective, 20-armed.

the variance. To get rid of tuning the parameter εdecay, we generate uniformly at
random the parameter εdecay ∈ (0, 1). Shannon entropy measures the unfairness
regret, Section 4. For example, for 2-objective, 6-armed with Pareto front A∗ =
{a∗1, a∗2, a∗3, a∗4}, where a∗i is an optimal arm, Experiment 1. If the number of
selecting each arm vector NNN by an algorithm is NNN = [30, 20, 20, 15, 10, 5]T and
the optimal number NNN∗ of selecting each arm is NNN∗ = [25, 25, 25, 25, 0, 0]T at
time step t = 100 without initial steps, then Shannon entropy is 0.0143.

Non-Convex Mean Vector Set;
Experiment 1. We use the same example in [2], since it is simple to understand
and the Pareto mean set contains values close to each others. The number of
arms |A| is 6, and the number of objectives |D| is 2. The true mean vector set
is (µµµ1 = [0.55, 0.5]T ,µµµ2 = [0.53, 0.51]T ,µµµ3 = [0.52, 0.54]T ,µµµ4 = [0.5, 0.57]T ,µµµ5 =
[0.51, 0.51]T ,µµµ6 = [0.5, 0.5]T ), the standard deviation for arms in each objective
is set to 0.1. Note that the Pareto front is A∗ = (a∗1, a

∗
2, a
∗
3, a
∗
4) where a∗i refers to

the optimal arm i∗. The suboptimal a5 is not dominated by the two optimal arms
a∗1 and a∗4, but a∗2 and a∗3 dominates a5 while a6 is dominated by all the other
mean vectors. Fig. 2 shows a set of 2-objective true mean with a non-convex set.

Experiment 2. We add extra 3 objectives and 14 arms in Experiment 1,
resulting in 5-objective, 20-armed, we add 3 optimal arms and 11 dominated
arms by all the arms in Pareto front A∗. Pareto front contains 7 optimal arms.
Fig. 3 gives the average cumulative Pareto and unfairness regret performances.
The y-axis is either the average of the cumulative Pareto or unfairness regret
performance. The x-axis is the time steps. Fig. 3 shows the performance of
algorithms. The annealing-Pareto is the best algorithm and Pareto-UCB1 is the
worst one. Pareto-KG has an intermediate performance.

Convex Mean Vector Set
Experiment 3. With number of objectives D equals 2, number of arms |A|
equals 20 and convex Pareto mean set, (µµµ1 = [.56, .491]T ,µµµ2 = [.55, .51]T ,µµµ3 =
[.54, .527]T ,µµµ4 = [.535, .535]T ,µµµ5 = [.525, .555]T ,µµµ6 = [.523, .557]T ,µµµ7 = [.515,
.56]T ,µµµ8 = [.505, .567]T ,µµµ9 = [.5, .57]T ,µµµ10 = [.497, .572]T ,µµµ11 = [.498, .567]T ,
µµµ12 = [.501, .56]T ,µµµ13 = [.505, .495]T ,µµµ14 = [.508, .555]T ,µµµ15 = [.51, .52]T ,µµµ16 =
[.515, .525]T ,µµµ17 = [.52, .55]T ,µµµ18 = [.53, .53]T ,µµµ19 = [.54, .52]T ,µµµ20 = [.54, .51]T ),
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Fig. 3. Performance comparison on 5-objective, 20-armed with non-convex mean vector
set. Left sub-figure shows the average cumulative Pareto regret performance. Right sub-
figure shows the average cumulative unfairness regret performance.

the standard deviation for arms in each objective is set to 0.1. The Pareto front
A∗ contains 10 optimal arms, A∗ = (a∗1, a

∗
2, a
∗
3, a
∗
4, a
∗
5, a
∗
6, a
∗
7, a
∗
8, a

∗
9, a
∗
10). Fig. 2

shows a set of 2-objective convex true mean vector set.

Experiment 4. We add extra 3 objectives and 10 arms in Experiment 3, re-
sulting in 5-objective, 20-armed, we add dominated arms by all the arms in A∗.
Pareto front A∗ still contains 10 optimal arms. Fig. 4 gives the average cumula-
tive Pareto and unfairness regrets and shows the annealing-Pareto performance
is the best algorithm, and the Pareto-UCB1 performance is the worst one accord-
ing to the Pareto regret performance, while according to the unfairness regret
performance Pareto-KG is the worst algorithm.
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Fig. 4. Performance comparison on 5-objective, 20-armed with convex mean vector
set. Left sub-figure shows the average cumulative Pareto regret performance. Right
sub-figure shows the average cumulative unfairness regret performance.

From the above experiments, we see that the annealing-Pareto algorithm is
the best one according to both the unfairness and Pareto regrets. The intuition is
that the annealing-Pareto does not have an exploration term that decreases fast
to 0 after time steps to control the trade-off between exploration and exploita-
tion. Instead, the annealing-Pareto has a decay parameter that decreases slowly
to 0, this means that the annealing-Pareto explores widely the available arms.
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For convex mean vector set, Pareto-KG outperforms Pareto-UCB1 according to
the Pareto and unfairness regrets.While, for non-convex mean vector set, Pareto-
KG outperforms Pareto-UCB1 according to the Pareto regret and Pareto-UCB1
outperforms Pareto-KG according to the unfairness regret. The intuition is the
exploration term. The exploration term for UCB1 depends on the time step t
and the number of times Ni arm i is pulled and it will be high if the arm i is
less selected. Thus, UCB1 plays fairly the optimal arms because it selects the
optimal arms that have either larger estimated mean or larger exploration term.
In contrast, the exploration term for KG policy depends on the estimated mean
of all other arms and on the estimated variance of arm i. The exploration term
is large if the variance of arm i is low, or if the estimated mean of arm i exceeds
in the future. Thus, KG selects more efficiently the optimal arms.

7 Conclusion

We introduced the normal MOMAB, Pareto dominance relation, the perfor-
mance measure in the MOMAB, Pareto-KG and Pareto-UCB1. We proposed
the annealing-Pareto algorithm. We proposed using the entropy measure as a
performance measure in the MOMAB. We studied empirically the trade-off be-
tween exploration and exploitation (or the trade-off for short) in the normal
MOMAB. Pareto-KG and Pareto-UCB1 trade-off by using KG and UCB1 policy,
respectively. While, the annealing-Pareto trades-off by using a decay parameter.
Finally, we compared Pareto-KG, Pareto-UCB1, and the annealing-Pareto and
concluded that: the annealing-Pareto is the best algorithm according to both
the Pareto and the unfairness regret performance measures.

References

1. Yahyaa, S.Q., Drugan, M.M., Manderick, M.: The Scalarized Multi-Objective Multi-
Armed Bandit Problem: An Empirical Study of its Exploration vs. Exploration
Tradeoff. In: International Joint Conference on Neural Networks. (2014)

2. Drugan, M.M., Nowe, A.: Designing Multi-Objective Multi-Armed Bandits Algo-
rithms: A study. In: International Joint Conference on Neural Networks. (2013)

3. Sethna, J.: Statistical Mechanics: Entropy, Order Parameters and Complexity. Ox-
ford University Press, (2006)

4. Zitzler, E. and et al.: Performance Assessment of Multiobjective Optimizers: An
Analysis and Review. J. IEEE Transactions on Evolutionary Computation 7, 117–
132 (2002)

5. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-Time Analysis of the Multiarmed
Bandit Problem. J. Machine Learning 47(2-3), 235–256 (2002)

6. Yahyaa, S.Q., Drugan, M.M., Manderick, B.: Knowledge Gradient for Multi-
Objective Multi-Armed Bandit Algorithms. In: International Conference on Agents
and Artificial Intelligence (ICAART). (2014)

7. Ryzhov, I.O., Powell, W.B., Frazier, P.I.: The Knowledge Gradient Policy for a
General Class of Online Learning Problems. In: Operation Research, (2011)

8. Powell, W.B.: Approximate Dynamic Programming: Solving the Curses of Dimen-
sionality. John Willey and Sons, New York, USA, (2007)


