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Abstract. With the fast development of information technology and
increasingly prominent environmental problems, building comfort and
energy management become the major tasks for an intelligent residen-
tial building system. This paper identifies the system requirements of
Smart Buildings, analyzes the problems that need to be solved and how
Reinforcement Learning is suitable for dealing with them. It also pro-
poses to represent parts of Smart Buildings as Cyber-Physical Systems.
Although the global goal is to model and manage a complex and whole
system of a Smart Building, since the work is in progress, in this paper
we mainly focus on how Reinforcement Learning technique is good at
controlling subsystems, specifically the Ventilation System. The exper-
imental results show the advantages of our system compared with the
widely used baselines: On/Off control and PI control approaches.
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1 Introduction

According to United Nations Environment Programme [1], buildings use about
40% of global energy, 25% of global water, 40% of global resources, and they emit
approximately 1/3 of Green House Gas (GHG) emissions. With the development
of human society, environmental issues have drawn more and more attention. In
this background, buildings can offer a great potential for achieving significant
GHG emission reductions in different countries. Furthermore, energy consump-
tion in buildings can be reduced by using advanced technologies and manage-
ment. On the other hand, people spend greater part of their time in buildings. As
the quality of life in home is increasingly considered as of paramount importance,
many people constantly seek to improve comfort in their living spaces. Mean-
while, the popularization of the concept of home office makes the productivity in
smart buildings economically significant. How to manage buildings in a proper
way to improve energy efficiency and comfort level while reducing pollution at
the same time is therefore a subject of uttermost importance.



Corresponding to the increasing demands for environment, comfort, energy,
and productivity, advanced methods are applied for improving comfort condi-
tions in smart buildings thanks to the dramatically rapid development of infor-
mation technologies. Widespread utilization of computing devices, powerful but
low cost sensors and actuators, and ubiquitous networks make the intelligent
control more easily come true. Actually the implementation of smart buildings
involves controls of different subsystems and devices. Hence itself is a system of
systems.

Based on this context, Cyber-Physical System (CPS) can be used to model
this complex system, which is integrations of computation, networking and phys-
ical processes, in which embedded computers and networks monitor and control
the physical processes with feedback loops where physical processes affect compu-
tations and vice versa [2]. CPSs integrate the dynamics of the physical processes
with those of the software and networking, providing abstractions and modelling,
design, and analysis techniques for the integrated whole. Modelling and control-
ling smart buildings as CPSs can bring many advantages: different subsystems
such as heating, ventilation and air-conditioning (HVAC) can communicate with
other electrical devices to form an intelligent whole; more information can be
integrated and shared, for example, real-time and forecasting local weather data
from observatories can be used through networks to assist HVAC system to
make better decisions or even to help power distributors to balance loads; the
system can be more robust and the cost can be reduced by separating sensors
and actuators from traditional electrical devices.

In this work, we try to reformulate smart buildings as CPSs and capitalise on
Reinforcement Learning (RL) and Multi-Agent techniques to control the whole
system. Due to the work being in progress, in this paper we mainly focus on
modeling and controlling subsystems, specifically the ventilation system. Our
contributions is threefold: firstly we identify the system requirements for smart
buildings; then inspired from [3] we propose the method to model ventilation
system as CPS; finally RL is proposed to control the ventilation system, its
performance is analyzed and compared with PI control and On/Off control. The
rest of this paper is organized as follows: Section 2 presents the related work.
Section 3 analyzes system requirements for smart buildings. Section 4 focuses on
RL and its feasibility. Section 5 investigates ventilation system and models it as
CPS. Experimental results are presented and analyzed in Section 6. Finally we
conclude in Section 7.

2 Related Work

Research is increasing in the emerging field of smart buildings. Kleissl et al.
[4] regard smart buildings as CPS, and by examining different buildings and
their energy use in detail they point out opportunities available to improve en-
ergy efficiency operation through various strategies from lighting to computing.
However, the requirements for developing smart buildings and the architecture
of the system have not been analysed and proposed. In order to improve com-



fort in buildings, authors of [5] propose an adaptive smart home system named
CASAS, which utilizes machine learning techniques to discover patterns in oc-
cupant’s daily activities and to generate automation policies that mimic these
patterns. Although the user’s explicit or implicit wishes can be adapted, the
energy consumption of the building has not been taken into account. Actually
energy efficiency is one of the key factors that need to be considered when design-
ing smart buildings, since more comfort usually comes at the expense of higher
energy consumption. Therefore these two conflicting points should be carefully
balanced. In [3] and [6], thermal comfort and indoor air quality in buildings
are improved separately by intelligent control methods while less energy is used
compared with conventional controllers. However, a smart building is a system
of systems, and only individual subsystems being well controlled is not enough.
Hence, in our work we undertake the analysis and design from a global view,
while implementing the system by a bottom-up approach.

Both to make subsystems have the ability to take intelligent decisions, and
the global system learn good strategies to schedule and coordinate these subsys-
tems, RL brings advantageous properties. Up to now, RL has been successfully
used on a wide range of problems. Peters et al. [7] propose an intelligent decen-
tralized control mechanism, which is able to operate in different Smart Electricity
Markets, by using autonomous broker agents. These agents can accommodate
arbitrary economic signals and learn efficiently over the large state spaces re-
sulting from the signals with function approximation. After learning, they are
capable of deriving long-term, profit-maximizing policies. Li et al. [8] present
an improved MAXQ [9] method to minimize electricity costs on the premise of
satisfying the power balance and generation limit of units in a microgrid and the
proposed multi-agent architecture is beneficial to handle the problem of ”curse of
dimensionality” and speed up learning in the unknown large-scale world. Other
works focusing on robotic and traffic light control can be found in [10,11] and
[12,13] respectively.

3 System Requirements for Smart Buildings

Actually a Smart building is a system of systems. It requires to think about
different subsystems and devices as an integrated whole that has a global objec-
tive. Different functional parts of this whole can be modelled as agents so that
the individual objectives and the global objective can be reached by cooperating,
coordinating, and negotiating among these agents. Therefore, the smart building
can be regarded as a multi-agent problem. On the other hand, improving the
comfort of a single building is important whereas reducing energy consumption
so as to reduce electric bill, balancing power distribution, and shifting peak load
are also vital. So the desired strategy is to reasonably balance comfort and en-
ergy consumption not only in one building but also among different buildings of
a district. In order to model this complex system, we first need to analyse the
requirements for smart buildings.



3.1 Multi-Authority and Multi-Level

A smart building comprises various agents, such as air-conditioning agent, venti-
lation agent, water-heating agent and so on. This forms multi-authority of lower
level. If there does not exist communication between agents, each of them can
be considered as selfish, that is each of them try to maximize its individual
goal regardless of the states of other agents and the global objective. From a
higher viewpoint, each smart building can be regarded as an independent agent
and some of these agents constitute a smart district, in which smart buildings
can improve their comfort, balance total grid load and reduce energy consump-
tion through communication, cooperation and coordination. This is multi-level
requirement for smart buildings.

3.2 Multi-Objective

Authorities of different levels want to reach their own objectives and global ob-
jectives of higher level. For instance, thermal comfort, indoor air quality, and
visual comfort are three basic factors which determine the comfort conditions
in buildings [14], and relative devices treat improving these comforts as their
individual objective, while they also need to consider global objective: reduc-
ing energy consumption and peak load shifting. Individual objective and global
objective are often conflicting: improving comfort often means consuming more
energy.

3.3 Heterogeneity

Heterogeneity in smart buildings mainly comes from three aspects. First, the
devices in buildings are diverse with different control strategies. How to inte-
grate them together and have a proper management is important. Moreover,
multi-level structure, that has been presented in Section 3.1, brings difficulties
in designing the system. In addition, different occupants have different user pref-
erences, including comfort definition, device type, and their physical activities in
buildings. Electrical devices in buildings are heterogeneous. In general, they can
be divided into two categories: power consuming devices and power producing
devices. However, in [15] these two categories are unified by a new word called
prosumer which means either producing or consuming. By convention, a positive
prosumption represents a production and a negative one a consumption. But in
order to analyse device properties we still use former notions.

Power Consuming Devices In this category, devices consume power when
they are working and they are divided as negotiable and non-negotiable. Nego-
tiable devices are these who can reduce working power, called power-negotiable
(e.g. intelligent air-conditioning, intelligent ventilation system), so as to reduce
comfort within a range that occupants could accept; who can postpone schem-
ing start-time, named time-negotiable (e.g. washing machine), in order to shift



peak load; who can both reduce working power and postpone scheming start-
time, called power-time-negotiable (e.g. water heating system, storage system),
to provide a flexible service. Non-negotiable devices are inflexible, that means
when people turn them on, they always consume power as required (e.g. daylight
lamp, TV, computer).

Power Producing Devices In smart buildings, there often exist power pro-
ducing devices to make full use of green energy and help decrease the load on
main grids. Some of these devices can provide constant power like fuel cells, micro
turbines, and storage systems, while the others can merely offer variable outputs,
which strongly depend on weather conditions, such as photovoltaic panels and
wind turbines. At this time, storage systems are required for these devices to play
a role as buffers, which can achieve constant outputs to protect the micro-grid.

3.4 Scalability

The desired system should be scalable. In a single building, devices often plug
in and out, and in a district, new buildings may participate. This requires the
architecture we design have the ability of scalability and the decision-making
algorithms need to be decentralized.

3.5 Incremental Change

Although smart buildings can bring numerous benefits, traditional buildings
with traditional devices already exit. Hence any changes introduced in the future
should be reasonably gradual so as not to disturb and damage the working system
and its service. This requires the designing system can tolerate and integrate the
exiting traditional devices.

4 Reinforcement Learning

Compared with traditional control, CPSs enable consider more inputs to better
realize the dynamic of the physical world so as to support decision making. For
example, nowadays most air-conditionings use On/Off and PI control. On/Off
control regulates temperature by using a compressor that is periodically either
working at maximum capacity or switched off entirely, whereas PI control has
a variable-frequency drive that incorporates an adjustable electrical inverter to
control the speed of the motor and thus the compressor and cooling output.
The inputs for On/Off and PI control are only indoor temperature. However, for
CPSs they can capitalize on more inputs like occupant number, since bodies are
also heat source that can increase indoor temperature. In order to benefit from
CPSs, it seems that traditional control methods, which are often straightforward,
are not enough.



Hence, we advocate the use of RL to control smart buildings, which offers
a suitable set of techniques to address these challenges. The classical reinforce-
ment learning framework is based on Markov Decision Processes (MDPs). An
MDP can be depicted by a tuple (X,U, f, ρ, γ). X is the set of states it can
perceive, U is the set of possible actions it can perform in these states, f
is the state transition function, ρ is the reward function that evaluates the
immediate effect of an action, and γ is the discount factor. The goal of RL
is to find an optimal policy, h : X → U , that maximizes the return from
any initial state x0: Rh(x0) =

∑∞
k=0 γ

kρ(xk, h(xk)), where γ ∈ [0, 1) and k
is discrete time step. The discount factor can be interpreted intuitively as a
measure of how ”far-sighted” the controller is on its rewards, or as a way of
taking into account increasing uncertainty about future rewards [16]. In or-
der to characterize policies, state-action value function (Q-function) is used,
Qh : X × U → R. After finding an optimal Q-function Q∗(x, u), optimal policy
h∗(x) can be obtained greedily by h∗(x) ∈ arg maxuQ

∗(x, u). In this work, the
model-free online algorithm Q-learning [17] is used to update the Q-function.
The choice of this algorithm is motivated by the fact that no explicit model
of the dynamics of a smart building is available, due to the great amount
of involved devices. Moreover, some inputs like the number of occupants pre-
sented in the room are random. Hence, considering f as a stochastic function
is more realistic. Q-learning can work as a sample-based algorithm to deal with
stochastic approximation procedure. The Q-function is updated online at ev-
ery new sample of the form (xk, uk, xk+1, rk+1), using the following equation:
Qk+1(xk, uk) ← Qk(xk, uk) + αk[rk+1 + γmaxu′ Qk(xk+1, u

′) − Qk(xk, uk)]. In
subsystems, RL can be utilized as intelligent controller to control devices such
as heating and ventilating systems. In global system, RL can optimize the coor-
dination of subsystems.

5 Ventilation Controlling Subsystem

In this section, we mainly focus on the ventilation subsystem. A thermal sub-
system has been investigated in our previous work [18].

The ventilation controlling system is used to improve indoor air quality. In
most cases, people can obtain a good indoor air quality by simply opening win-
dows. However, in some situations, we need mechanical ventilating devices to
exchange indoor air, for example, when there are many visitors in the room,
when outdoor air speed is close to zero, when there is no window in the room,
and for people who live in modern skyscrapers in which opening windows will
raise the possibility of hidden danger and hence is often forbidden.

The indoor air quality is mainly decided by CO2 concentration. People gen-
erate CO2 and consume oxygen, at a rate that depends primarily on their body
size and their level of physical activity[19]. The rate of oxygen consumption in
L/s of a person is given as

VO2
=

0.00276ADM

(0.23RQ+ 0.77)
(1)



where RQ is the respiratory quotient (the relative volumetric rates of carbon
dioxide produced to oxygen consumed). M is the level of physical activity or the
metabolic rate per unit of surface area in met (1 met = 58.2 W/m2). AD is the
DuBois surface area in m2, which can be estimated by the following equation

AD = 0.203H0.725W 0.425 (2)

where H is the body height in meter and W is the body mass in kg. For an
average size adult, AD is about 1.8m2.

The value of RQ depends on diet, the level of physical activity and the
physical condition of the person. It is equal to 0.83 for an average size adult
engaged in light or sedentary activities (about 1 met), and increases to a value of
about 1 for heavy physical activity (about 5 met). The carbon dioxide generation
rate in L/s of an individual is

VCO2
= VO2

×RQ (3)

Steady state CO2 concentration can be determined for a given ventilation
rate based on a single zone mass balance analysis. Assuming that in a room
there are N adults and the room is equipped with an electric fan. The mass
balance of CO2 in the room can be expressed as follows:

V
dC

dt
× 10−6 = G× 10−3 +Q× (Cout − C)× 10−6 (4)

where V is building volume in m3, C is indoor CO2 concentration in ppm(v),
Cout is outdoor CO2 concentration in ppm(v), t is time in second, G is indoor
CO2 generation rate in L/s, and Q is ventilation rate in m3/s. Generally an
acceptable value of indoor CO2 concentration varies from 600 ppm(v) to 1000
ppm(v), and 800 ppm(v) is set as a reasonable setpoint for a good indoor air
quality.

Figure 1 depicts the architecture of the CPS for ventilation control. In this
figure, there are three parts: Physical World, Network, and Cyber World. Phys-
ical World contains Sensor Domain and Actuator Domain. Different indoor and
outdoor parameters, such as air speed, CO2 concentration, occupant number,
metabolic rate, etc., can be observed by different sensors and these data are
transmitted to Cyber World though the network. In Cyber World, we use RL
because it can deal with the random appearance of occupants. With this algo-
rithm, the captured data are used to decide the current state and the reward of
last time. RL can make good decisions automatically by trial and error without
the need of a specific model of the problem. Based on this technique multiple
devices in Physical World are controlled by the actuating signals from Cyber
World.

6 Experiments

The goal of this work is to control the mechanical ventilation system to keep
the CO2 concentration at the setpoint while reduce energy consumption. Specif-
ically, according to the present information of occupants’ number and indoor
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Fig. 1. Cyber-Physical System for ventilation control

CO2 concentration, the system should adjust the electric fan’s speed to control
the ventilation rate. We assume the maximum number of occupants is 10 with
average size and doing light or sedentary activities in a house of 100m2×3m. The
CO2 concentration in [750, 1200] is discretized into 450 states, plus 2 over bound-
ary states. Therefore the total number of state is 452×11 = 4972. The mechanical
ventilation system used has a maximum ventilation rate of 0.25m3/s with power
of 40 W and can take 13 actions: {0,4,8,12,16,20,25,30,40,50,60,70,80,100}% of

the maximum ventilation rate. The reward function is rk+1 = e−
(Ck−800)2

20000 ×8−8,
where Ck is the indoor CO2 concentration at time step k. Due to the slow vari-
ation property of CO2 concentration, the time step is set to 300 seconds.

Figure 2(a) compares the CO2 concentration variations within one day by
three different control methods. The black line is the occupant number change
during this period of time. The result indicates that the CO2 concentration can
be unnecessarily reduced far below 800 ppm by On/Off control, which simply
turns on the fan with maximum power if any occupants are detected in the
room while turns off if not. Although it can provide continuously fresh air flow,
it consumes much more energy than the others. PI control (proportional gain:
0.003, integral gain: 0.000001) can keep the CO2 concentration at the setpoint
smoothly, except for every change of number of occupant’s presence, which causes
the overshoot of the concentration. RL method can offer the best comfort, even
though the CO2 concentration has small vibration, that is caused by the discrete
definition of actions and occurs often in RL applications. For residential build-
ings, this slight fluctuation will not affect inhabitants’ comfort. The comparison
of ventilation rates is presented in Figure 2(b). It reflects that when there are
more occupants in the room, the quicker dynamic of physical environment makes
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Fig. 2. Experimental Results

it more challenging for RL to control. The total energy spent is 0.1379 kWh/day
by PI control, 0.1403 kWh/day by RL, and 0.6401 kWh/day by On/Off control.
Compared with On/Off control, RL can save 78.08% energy, and compared with
PI control, although RL use 1.74% more energy, it is not only able to maintain
good indoor air quality but also more suitable and feasible for implementing
CPSs in smart buildings.

7 Conclusion

In this paper, we identified the system requirements for smart buildings, includ-
ing multi-authority and multi-level, multi-objective, heterogeneity, scalability,
and incremental change. Then we presented the framework of Reinforcement
Learning and explained why RL is suitable to resolve most of the smart building
challenges. After that, a subsystem, specifically a ventilation system, was inves-
tigated and modeled by a CPS approach. The experimental results revealed that
Q-Learning, a model-free online RL technique, is more adaptable and feasible
than conventional PI and On/Off approaches for managing a ventilation system
in a smart building to improve comfort level while reduce energy consumption.

In the future, function approximation will be utilized, since there are more in-
formation (input variables) available for CPSs and often these input variables are
continuous, so it will not be applicable to discretize them anymore. In addition,
various RL techniques will be compared and analyzed to find their applicabil-
ity for smart building management. After that, different subsystems in smart
buildings will be integrated together based on Multi-agent System approach.
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