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Abstract. Our goal is to build robust optimization problems for making
decisions based on complex data from the past. In robust optimization
(RO) generally, the goal is to create a policy for decision-making that is
robust to our uncertainty about the future. In particular, we want our
policy to best handle the the worst possible situation that could arise, out
of an uncertainty set of possible situations. Classically, the uncertainty
set is simply chosen by the user, or it might be estimated in overly sim-
plistic ways with strong assumptions; whereas in this work, we learn the
uncertainty set from data collected in the past. The past data are drawn
randomly from an (unknown) possibly complicated high-dimensional dis-
tribution. We propose a new uncertainty set design and show how tools
from statistical learning theory can be employed to provide probabilistic
guarantees on the robustness of the policy.
Keywords: machine learning, uncertainty sets, robust optimization, data-
driven decision making, decision making under uncertainty.

1 Introduction

In this work, we consider a situation often faced by decision makers: a policy
needs to be created for the future that would be a best possible reaction to
the worst possible uncertain situation; this is a question of robust optimization.
In our case, the decision maker does not know what the worst situation might
be, and uses complex data to estimate the uncertainty set, which is the set of
uncertain future situations. Here we are interested in answering questions such
as: How might we construct a principled uncertainty set from these complex
data? Can we ensure that with high probability our policy will be robust to
whatever the future brings?

The uncertainty set U can be defined in many ways, and the central goal
of this work is how to model U from complex data from the past. The data
{(xi, yi)}ni=1 take the form of features and labels, with xi ∈ X ⊆ Rd and yi ∈ Y.
Some of the different ways uncertainty sets can be constructed are:
• Using a priori assumptions: We may have a priori knowledge about the range
of possible future situations. This knowledge can guide us in constructing the
uncertainty set U using, for instance, interval constraints.
• Using empirical statistics: We could create an uncertainty set using empirical
statistics of the labels ignoring the feature vectors altogether.
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• Using linear regression to model complex data: Here, we use the complex past
data {(xi,yi)}ni=1, but we make strong (potentially incorrect) assumptions on
the probability distribution these data are drawn from.

• Using machine learning to model complex data, which is the topic of this
work: This setting is more general than linear regression and with much weaker
assumptions. We provide two principled ways to construct set U using historical
data. In both, we optimize prediction models over the data {(xi,yi)}ni=1, and use
them to construct uncertainty set U . U is used within the robust optimization
problem to construct π∗, and Theorem 1 provides a guarantee on its robustness;
this guarantee is derived using statistical learning theory. Theorem 1 describes
the guarantee for a generic class of prediction models and Theorem 2 specializes
the guarantee for a specific set of prediction models, namely, the conditional
quantile models. The only assumption made in this approach is that the data
are drawn i.i.d from an unknown source distribution. In particular, there is no
normality assumption. Let us give examples of how the two methods we propose
for this approach would work when U is constructed from a regression problem:

– For the first method, for every x̃ the uncertainty set U corresponds to the
domain of a indicator function on part of the set Y. It is 1 on most of the
training examples and is 0 farther away from them. Figure 1(a) shows an
illustration of this.

– For the second method, we estimate the 95th and 5th percentiles of y given
x̃ and set U to be all values of y ∈ Y between the two estimates. Figure 1(b)
illustrates this.

Being able to define uncertainty sets from predictive models is important:
the uncertainty sets can now be specialized to a given new situation x̃ ∈ X , and
this is true even if we have never seen x̃ before. For instance, when ordering daily
supplies yi for an ice cream parlor in Boston, an uncertainty set that depends
on the weather might be much smaller than one that does not; planning for
too much uncertainty in the weather can be too conservative and very costly: it
would not be wise to budget for the largest possible summer sales in the middle
of the winter.

Our approaches for constructing uncertainty sets are flexible, intuitive, easy
to understand from a practitioner’s point of view, and at the same time can
bring all the rich theoretical results of learning theory to justify the data-driven
methodology. Our uncertainty set designs can handle prediction models for clas-
sification, regression, ranking and other supervised learning problems. A main
theme of this work is that RO is a new context in which many learning theory
results naturally apply and can be directly used.

The closest work to ours is possibly that of [1], where the authors provide
a linear-regression-based robust decision making paradigm for portfolio alloca-
tion problems, where they assume a multivariate linear regression model for the
learning step. A big departure from this approach is that in our work, we are able
to design uncertainty sets for a general class of decision making problems while
making weak assumptions about the distributional aspects of the historical data.
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(a) Using optimized set function

(b) Using optimized conditional quantile func-
tions

Fig. 1. The empirical data {xi,yi}ni=1 is shown along with the boundaries created by
the proposed methods in each of the above figures. Evaluation of these boundaries at a
given x̃ produces an uncertainty set. In (a), a set function is optimized over the sample
and its evaluation at every x̃ is plotted. In (b), we use optimized conditional quantile
models to get the boundaries.
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We base our uncertainty set design on regularized empirical risk minimization,
which is quite a bit more general than regression.

2 Formulation

Let all the uncertain parameters of the decision problem be denoted by a vector
u ∈ Rm. Given a realization of u, let the (basic non-robust) decision making
problem be written as:

min
π
ρ(π,u) s.t. F (π,u) ∈ K. (1)

Here π ∈ Π ⊆ Rd1 is the decision vector and f : Π × Rm → R is the objective
function. Function F : Π × U → K and convex cone K ⊆ Rd2 describe the
constraints of the problem.

The robust version of the decision problem in Equation (1) is thus:

min
π

max
u∈U

f(π,u) s.t. F (π,u) ∈ K for all u ∈ U , (2)

where U ⊂ Rm represents the uncertainty set.
To solve Equation (2), we prescribe the following steps:

Step 1: Construct U using any of the four methods listed in this section.
Step 2: Obtain a robust solution, using either of the two options below:

Option 1: If U is a “nice” set, then there are natural ways [2] to transform it into
a relaxed set U ′ so that the robust optimization problem can be solved
to obtain a robust solution π∗. For instance, if U can be bounded using
a box or an ellipsoid, that box or ellipsoid can be U ′.

Option 2: If U is not a “nice” set, then sample L elements from U uniformly. Then
solve the sampled version of Equation (2) to obtain a robust solution
π∗.

We focus on Step 1. The goal is to ensure that the true realization of pa-
rameter u ∈ Rm belongs to set U with a high likelihood. Let u be equal to an
m-dimensional vector of unknown labels [ỹ1 . . . ỹm]T , where each label ỹj ∈ Y
can be predicted given a corresponding feature vector x̃j ∈ X . Thus m labels
{ỹj}mj=1, which can be forecasted from {x̃j}mj=1, feed into the decision problem
of Equation (2).
General prediction models:

Let x ∈ X ⊂ Rd represent a feature vector and y ∈ Y ⊆ R represent a label.
Consider a class of set functions I ∈ I, where I : X →MR, where MR is the set of
all measurable sets of R. Let us say that we have a procedure that picks a function
IAlg so that most of the labels of the training examples obey yi ∈ IAlg(xi), i =
1, ..., n. As long as IAlg belongs to a set of “simple” functions, we have a guarantee
on how well IAlg will generalize to new observations. Specifically, consider the
following empirical risk minimization procedure:

min
I∈I

1

n

n∑
i=1

1[yi /∈ I(xi)], (3)
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where 1[·] is the indicator function. Let an optimal solution to the above problem
be IAlg. Then, define the uncertainty set U as:

U = Πm
j=1I

Alg(x̃j), (4)

where U is a product of m measurable sets.
The above setting is quite general. In particular, since the range of function

IAlg is MR, we can capture sets that are arbitrarily more complicated than
simple intervals. For instance, if Pyj |x̃j is bimodal, then for certain values of x̃j ,

IAlg(x̃j) can be the union of two disjoint intervals.
Conditional quantile models:

In this method, we specialize the generic function class I to the class of set
functions defined using conditional quantile models. We will estimate an upper
quantile of ỹ for each x̃, and a lower quantile of ỹ for each x̃. The uncertainty set
will be the interval between the two quantile estimates. This method is applicable
when our prediction task is a regression problem.

When y ∼ Py, the τ th quantile of y, denoted by µτ , is defined as µτ := inf{µ :
Py(y ≤ µ) = τ}. Here τ can vary between 0 and 1. In the special case when τ is
set to 0.5, this defines the median. Similarly, when (x, y) ∼ Px,y, the conditional
quantile µτ can be defined as a function from X to Y, µτ (x) := inf{µ : Py|x(y ≤
µ) = τ}.

In our setting, ỹj conditioned on x̃j is distributed according to Pỹj |x̃j . Thus,
given a value of τ ∈ [0, 1], Pỹj |x=x̃j (ỹj ≤ µτ (x̃j)) = τ where µτ (x) is the condi-
tional quantile defined earlier. Our method picks two values of τ , δp ≤ δq such
that:

Pỹj |x̃j (ỹj ≤ µδp(x̃j)) = δp, and Pỹj |x̃j (ỹj ≤ µδq (x̃j)) = δq.

For example, a typical value for the pair (δp, δq) can be (0.05, 0.95) which makes
µδp(x̃j) correspond to the 5% conditional quantile and µδq (x̃j) correspond to
the 95% conditional quantile. Given these two conditional quantiles, we have:

Pỹj |x̃j (µδp(x̃j) < ỹj ≤ µδq (x̃j)) = δq − δp.

Thus, the unknown future realization of ỹj belongs to the interval [µδp(x̃j), µδq (x̃j)]
with high probability if δp and δq are chosen appropriately.

Quantile regression can be seen as an empirical risk minimization algorithm
where the loss function is defined appropriately to obtain a conditional quan-
tile function. That is, we aim to obtain an estimator function β(x) of the true
conditional quantile function µτ (x) given a predefined quantile parameter τ . In
particular, the pinball loss (or newsvendor loss) function defined below is used.

lτ (β(x), y) =

{
τ · (y − β(x)) if y − β(x) ≥ 0,

(τ − 1) · (y − β(x)) otherwise.

Let lτP(β) = Ex,y[lτ (β(x), y)]. In our setting, we will let B0 be our hypothesis
class that we want to pick conditional quantile functions from.
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Let the empirical risk minimization procedure using the pinball loss out-
put a conditional quantile model βAlg,τ when given the historical sample S =
{(xi, yi)}ni=1 of size n and a parameter τ . That is, let lτS(β) = 1

n

∑n
i=1 l

τ (β(xi), yi)
and βAlg,τ ∈ arg minβ∈B0

lτS(β). The following definition of U uses two empirical
conditional quantile functions with τ = δp and τ = δq respectively:

U = Πm
j=1

[
min

(
βAlg,δp(x̃j), βAlg,δq (x̃j)

)
,max

(
βAlg,δp(x̃j), βAlg,δq (x̃j)

)]
. (5)

Here U is again a product of m intervals, each one constructed so that it contains
the unknown ỹj with high probability.

3 Robustness guarantee using general prediction
functions

Consider the setting described in Section 2, where we have a class of general set
functions I. Let S := {(xi, yi)}ni=1 be the training data which are independent
and identically distributed. Let algorithm A represent a generic learning proce-
dure. That is, it takes S as an input and outputs IAlg. Since IAlg is a function
of sample S, we will show that the unknown ỹj belong to the interval IAlg(x̃j)
with high probability over S as long as the set of functions I from which IAlg

is picked is “simple”. Note that we do not assume anything about the source
distribution.

In order to state our result, we will define the following quantity known as
the empirical Rademacher average [3]. For a set F of functions, the empirical
Rademacher average is defined with respect to a given random sample S′ =
{zi}ni=1 as

RS′(F) = Eσ1,...,σn

[
1

n
sup
f∈F

∣∣∣∣∣
n∑
i=1

σif(zi)

∣∣∣∣∣
]
,

where for each i = 1, .., n, σi = ±1 with equal probability. The Rademacher
average is defined to be the expectation of the empirical Rademacher average
over the random sample S: R(H) = Ez1,...,zn [RS(H)]. The interpretation of
the Rademacher average is that it measures the ability of function class F to
fit noise, coming from the random σ′is. If the function class can fit noise well,
it is a highly complex class. The Rademacher average is one of many ways
to measure the richness of a function class, including covering numbers, fat-
shattering dimensions [4] and the Vapnik-Chervonenkis dimension [5].

Theorem 1. If U is defined as in Equation (4), then with probability at least
1− δ over training sample S, we have robustness guarantee

P{x̃j ,ỹj}mj=1

(
F (π∗, [ỹ1...ỹm]T ) ∈ K

)
≥1− 1

n

n∑
i=1

1[yi /∈ IAlg(xi)]− 2R(l ◦ I)−

√
log 1

δ

2n


+

m

,
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where ε > 0 is a pre-determined constant, and
[
·
]
+

is shorthand for max(0, ·).

The result is a lower bound on the probability of infeasibility. This bound
depends on the performance of the data dependent set function IAlg. If IAlg is
such that its performance, measured in terms of 1

n

∑n
i=1 1[yi /∈ IAlg(xi)] is good

(i.e., lower in value), then the right hand side of the inequality increases, resulting
in a higher chance of feasibility. This probability of feasibility also depends on
the number of estimates m that enter the decision problem of Equation (2).
When n → ∞, the Rademacher term and the square root terms become zero
and the probability of feasibility depends on the asymptotic performance of IAlg

(which converges to I∗, the ‘best-in-class’ set function), as desired.

4 Robustness guarantee using conditional quantile
functions

Theorem 2. If U is defined as in Equation (5), then with probability at least
1− δ over training sample S, we have

P{x̃j ,ỹj}mj=1

(
F (π∗, [ỹ1...ỹm]T ) ∈ K

)
≥ 1

n

n∑
i=1

(
r−ε (yi − βAlg,δq (xi))− r+ε (yi − βAlg,δp(xi))

)
− 8

ε
R(B0)− 2

√
log 2

δ

2n


+

m

,

(6)

where ε > 0 is a pre-determined constant,
[
·
]
+

is shorthand for max(0, ·),

r−ε (z) := min
(

1,max
(
0,− zε

) )
and r+ε (z) := min

(
1,max

(
0, 1− z

ε

) )
.

The lower bound is a function of the empirical performance of the two con-
ditional quantile estimators and the Rademacher average of the hypothesis set.
As n → ∞, the Rademacher average and the square-root term tend to zero at

a rate O( 1√
n

). The term 1
n

∑n
i=1

(
r−ε (yi − βAlg,δq (xi)) − r+ε (yi − βAlg,δp(xi))

)
converges to Px,y(βAlg,δp(x) ≤ y ≤ βAlg,δq (x)).

5 Conclusion

In this paper, we considered a class of single-stage decision making problems
where the uncertainty is derived from statistical modeling. We present two prin-
cipled approaches to design uncertainty sets in the robust optimization frame-
work for these problems using statistical learning theory. In the first approach,
we use a general class of set functions and define the uncertainty set using them.
The second approach develops this idea further using the notion of quantiles to
define the uncertainty set. For both approaches, we give probabilistic guarantees
on the feasibility of the robust solutions thus obtained.
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