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Abstract. Matrix factorization (MF) is one of the most powerful ap-
proaches used in the frame of recommender systems. It aims to model the
preferences of users about items through a reduced set of latent features.
One main drawback of MF is the difficulty to interpret the automatically
formed features. Following the intuition that the relation between users
and items can be expressed through a reduced set of users, referred to
as representative users, we propose a simple modification of a traditional
MF algorithm, that forms a set of features corresponding to these repre-
sentative users. On one state of the art dataset, we show that proposed
representative users-based non-negative matrix factorization (RU-NMF)
discovers interpretable features and does not significantly decrease the
accuracy on test with 10 and 15 features.

Keywords: Recommender systems, matrix factorization, features inter-
pretation.

1 Introduction

Recommender systems, that belong to machine learning area, aim to estimate
preferences (ratings) of target users on previously non-seen items, in order to
recommend them those items, which would probably satisfy these target users
[1]. Recommendation algorithms are used in a wide area of real services starting
from electronic commerce to considering search engines as a special type of
recommender systems.

In order to estimate unknown preferences, recommender systems can use in-
formation about the content of the items (content-based methods), preferences
of other users (collaborative filtering) or the both sources (hybrid approaches)
[1]. In the frame of collaborative filtering we can outline such approaches as
neighborhood-based [1] and matrix factorization-based techniques [2]. The first
approach searches for neighbor users, who have similar preferences as the tar-
get user and recommends items that were highly rated by his neighbors. Thus,
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if needed, recommendation can be easily explained: a certain item was recom-
mended because it was highly rated by the users having similar tastes to the
active one.

Matrix factorization relies on the idea that there is a small number of latent
factors (features) that underly the preferences (interactions) between users and
items. As these features are defined so as to fit at best the data, no obvious
interpretation can be made of them and as a result, unlike neighborhood-based
approaches, recommendations have no obvious explanation. However, as it was
shown in [3], providing explainable recommendation remains important for the
users fidelity.

Based on the assumption that the preferences between users are correlated,
we assume that within the entire set of users, there is a small set of users that
have a specific role or have specific preferences. These users can be considered as
representative of the entire population and we intend to discover features that
are associated with these representative users. We think that if the discovered
features would represent elements from the real world, they could not only be
interpretable, but the recommendations could also be easily explained, similarly
to the explanation provided by neighbor-based approaches, where neighbors are
replaced by representative users. In order to identify these representative users we
propose a representative users-based non-negative matrix factorization approach
(RU-NMF), which is a slight modification of traditional non-negative matrix
factorization technique based on multiplicative update rules.

This paper is a part of the work in progress about the discovery of features re-
lated to reality in matrix factorization-based approaches. In the current research
we rise two main questions: (a) can MF algorithms result in features that can be
associated with real users? (b) will the quality of recommendations be reduced
if such associations are made explicit? We also point out some potential benefits
of the resulting model. To the best of our knowledge, this work is the first one
that is interested in not only interpreting features in MF-based recommendation
approaches, but also in constraining these features so that they correspond to
real elements of the system.

2 Related works

Let M be the number of users and N the number of items. The interaction
between these entities is usually represented under the form of a matrix R
(dim(R) = M × N) with elements rmn corresponding to the rating assigned
by the user m to the item n. Thus the recommendation problem is reduced to
the task of estimating the missing values in R.

MF techniques decompose the original rating matrix R into two low-rank
matrices U (dim(U) = K ×M) and V (dim(V ) = K × N) in such a way that
the product of these matrices approximates the original rating matrix R ≈ R∗ =
UTV with respect of the condition of minimal loss. This task is usually solved
by optimization methods, such as gradient descent or alternating least squares
[4]. The set of factors K can be seen as a joint latent space on which a mapping
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of both users and items spaces is performed [4]. Thus matrices U and V can be
considered as transfer matrices to the new feature space from the spaces of users
and items respectively. MF techniques have recently attracted more attention
than traditional neighborhood-based approaches [1], as they are adequate for
large-scale and sparse datasets [5] and have proven to result in models of both
low-complexity and good accuracy (see Netflix Prize competition [4, 6]).

Features resulting from factorization usually do not have any physical sense,
what makes resulting recommendations less explainable. Some authors made at-
tempts to interpret them by using non-negative matrix factorization based on
multiplicative update rules (further referred to as NMF). NMF imposes the con-
dition of non-negativity on the values of matrices U and V , to ensure that each
user profile can be represented as an additive linear combination of coordinates
[7]. [8, 7] assumed that the features formed can be related to behavioral pat-
terns, or to groups of users. However, the interpretation of each feature is not so
easy to perform as it has to be discovered manually, by analyzing the content of
the matrices. Authors of [9] focused on the explanation of the recommendations
with MF techniques. With this aim, MF and neighborhood-based approaches
are combined through weighting schemes. Nevertheless, such a method allows
only partial explanation of the recommendations.

So we can conclude that relatively few works concern feature interpretation
in MF-based recommendation techniques and the proposed approaches either re-
quire human post-processing or provide only partial interpretation. Still such an
interpretation could be useful not only for understanding and characterizing the
relation between users and items but also to make recommendations explainable.

3 The proposed approach: RU-NMF

3.1 Preliminaries

Let us consider 2 linear spaces L1 and L2 of dimensionality respectively 6 and
3, with basic vectors in canonical form {um}, m ∈ 1, 6 and {fk}, k ∈ 1, 3 . Let
the transfer matrix from L1 to L2 be specified by matrix (1).

P =

0 0 p13 p14 1 p16
1 0 p23 p24 0 p26
0 1 p33 p34 0 p36

 (1)

u5, u1 and u2 are direct preimages of f1, f2 and f3 respectively. Indeed,

Pu5 = P
(

0 0 0 0 1 0
)T

=
(

1 0 0
)T

= f1. By analogy, Pu1 = f2, Pu2 = f3. At
the same time vectors u3, u4 and u6 will be mapped into linear combinations of
basic vectors f1, f2 and f3. For example, Pu3 = p13f1+p23f2+p33f3 presents
the linear combination for u3.

3.2 RU-NMF

As mentioned previously, matrix U can be considered as a transfer matrix from
the space of users to the space of features. Analyzing the example considered
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above, we can say that if matrix U has a form similar to (1), i.e. U has exactly K
unitary columns with one non-zero and equal to 1 element on different positions,
then the users corresponding to these columns are direct preimages of the K
features. We say they represent the canonical coding of the features, following
[10]. The features can thus be directly interpreted as users. These users will be
referred to as representative users.

Obviously, in the general case, one cannot guarantee that the matrix U will
be in a form similar to matrix (1). Worse, none of the column-vectors of matrix
U may directly represent the canonical form of a feature. However we could
design a matrix factorization approach that imposes appropriate constraints.
In our case, the constraints would be the following: K columns in U have to
represent the canonical coding of K different features. In order to solve this
problem we propose the RU-NMF approach, that forms both matrices U and V ,
with features corresponding to representative users. The whole process consists
of 6 steps, further detailed below.

Step 1. A traditional matrix factorization is performed, resulting in both
matrices U and V with K features. As in [8, 7], that were also focusing on the
interpretation of features, we used non-negative matrix factorization based on
multiplicative update rules.

Step 2. A normalization of each of the M column vectors of the matrix U is
performed so as to result in unitary columns. The resulting normalized matrix
is denoted by Unorm and the set of normalization coefficients by C.

Step 3. This step is dedicated to the identification of the representative users
in the Unorm matrix. We will consider user um as the best preimage candidate
for the feature fk if the vector in matrix Unorm corresponding to the user um
will be the closest to the corresponding canonical vector (a vector with the
only one non-zero and equal to 1 value on position k). The notion of closeness
between vectors is expressed in Euclidean distance. That is the task of finding
representative user um is reduced to solving the optimization problem (2).

dist(fk, u
norm
m )→ min (2)

where unormm is the vector from matrix Unorm corresponding to the user um.
Let us consider the following example. Assume that we have vector α of the

form
(
α1 α2 . . . αK

)T
with unique norm (

√
α2
1 + α2

2 + . . .+ α2
K = 1). Then the

distance between α and the first canonic vector f1 =
(

1 0 . . . 0
)T

is expressed
by dist2(f1, α) = (1 − α1)2 + α2

2 + . . . + α2
K . Performing simple mathematical

transformations we can obtain equation (3).

dist2(f1, α) = 2(1− α1) (3)

This means that the minimum of the distance is obtained under the condition
α1 → max. Taking into account this reasoning, we consider a user um as a
preimage candidate for the feature fk if the maximum value of appropriate vector
unormm is situated on the position k; and the best preimage candidate is the one
among all candidates with the highest maximum.
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Let us analyze what can be the highest value of distance (2) between a
canonic vector fk and a preimage candidate vector unormm . We have already
noted that maximum value of the candidate vector unormm is situated on the po-
sition k, otherwise um will be considered as a preimage candidate for another
feature. Considering the formula (3) we can say that the maximum of distance
is reached when the maximum value of the vector unormm is as small, as possible.
Obviously this condition holds only for the vector unormm with all equal values(

1√
K

1√
K
. . . 1√

K

)T
, where K is the dimensionality of unormm . In this case dis-

tance will be equal to distmax =
√

2(1− 1√
K

).

As we can see maximal value of distance depends on the dimensionality
of the feature space. So, in order to unify characteristics of representative users
considering different number of features and for simplicity of analysis, we propose
to use the quality score (4) for the identification of representative users and their
characterization.

q(um) = 1− dist(fk, um)

distmax(K)
(4)

The highest quality score, namely 1, is assigned to a candidate with a vector
equal to the canonical coding as the appropriate distance is equal to 0. The
lowest quality score, namely 0, is assigned to candidates with no influencing
coordinates (all values are equal).

Thus on the third step all users are divided into subgroups of preimage can-
didates for each feature (according to the position of maximal value in unormm ).
After this, the user with the highest quality score among all candidates is con-
sidered as the representative one for the current feature.

Once all preimages are identified, the matrix Unorm is modified so as to obtain
a matrix in a form of (1): in each column that corresponds to a representative
user, a 1 is assigned to the coordinate at the position of the maximum value and
a 0 is assigned to all others. The resulting modified matrix is the matrix Umod

norm.
In some cases, a feature, say feature fk, may have no candidate preimage. In

this case we can either decrease the number of features considered for factoriza-
tion or search for a vector with the second maximum situated on that specific
position.

Step 4. Each column of the matrix Umod
norm is multiplied to the appropriate

normalization factor from the set C resulting in matrix Umod. After this, repre-
sentative users will remain preimages of the features but with scaling coefficients.

Step 5. In order to obtain the best model we also have to modify the matrix
V under the condition of minimal loss. The modification of V can be performed
using optimization methods with the starting value obtained during the first
step. As the objective of this paper is to determine the relevance of finding
preimages of the features and to quantify the decrease of the quality of the
recommendations, we did not consider this step.

Step 6. The resulting recommendation model is made up of matrices Umod

and V according to the formula R∗ =
(
Umod

)T
V .



6 Marharyta Aleksandrova, Armelle Brun, Anne Boyer, Oleg Chertov

4 Experimental results

4.1 Datasets and Evaluation

In order to evaluate RU-NMF, we perform experiments on the 100k MovieLens
dataset1, which contains 100k ratings, ranging from 1 to 5, assigned by 943
users to 1682 movies (items). In all experiments, 80% of the ratings are used
for learning the model and 20% for testing it. We prepare 30 different pairs
of learning and test sets with the first one randomly chosen from the original
100k MovieLens dataset and the second one made up of the remaining part. The
accuracy of the models are evaluated with two classical measures: mean absolute
error (MAE) and root mean square error (RMSE) [11].

4.2 Quality of the Representative Users

In this section we answer the question (a), namely if MF algorithms can result
in features that can be associated with real users. For each of the 30 datasets,
we perform NMF with 10, 15 and 20 features. After that, for each run we order
the representative users by their quality score and compute the mean quality
at each rank (considering the number of features used for factorization). The
corresponding values are presented in figure 1. When the number of features is
equal to 10, the quality score of the representative users is particularly high:
90% of them have a quality score higher than 0.8 and 60% have a score higher
than 0.9. With 15 and 20 features the quality of representative users decreases.
For example, when the number of features is equal to 15, only half of the vectors
corresponding to representative users have a quality score above 0.8 and only
20% above 0.9. With 20 features only 30% of the representative users have a
quality above 0.8 and 10% above 0.9. As a result we can say that when the
number of features is equal to 10 NMF naturally results in features, which are
very close to the searched canonic form, that means in features that can be
interpreted as real users.

4.3 Traditional NMF versus RU-NMF

In this subsection we seek an answer to the question (b) will RU-NMF have a
considerable impact on the accuracy of the recommendations. The left part of the
table 1 presents the resulting mean and standard deviation values of both errors
(MAE and RMSE) on the 30 datasets for NMF with 10, 15 and 20 features.
The mean error value, for both MAE and RMSE, goes down on the learning set
when the number of features grows up. In contrast, on the test set the errors
increase with the number of features. This fact confirms the overfitting problem
mentioned in many works [12] and partially supports the conclusion of [9] that
the more adequate number of features on the MovieLens dataset is close to 10.
We can mention that on the test set, standard deviation seems to decrease as
the number of features increases, confirming the consistent increase in the error.

1 http://grouplens.org/datasets/movielens/
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Fig. 1. Quality score for 10, 15 and 20 features.

Table 1. NMF vs RU-NMF: mean and standard deviation values of errors with 10, 15
and 20 features on learning and test sets.

NMF RU-NMF

Learning set Test set Learning set Test set

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

10 features 10 features

mean 0.5482 0.7154 0.8014 1.0507 mean 0.5491 0.7168 0.8018 1.0512
std 0.0019 0.0019 0.0067 0.0096 std 0.0021 0.0022 0.0067 0.0096

15 features 15 features

mean 0.4933 0.6529 0.8393 1.1035 mean 0.4982 0.6613 0.8417 1.1071
std 0.0017 0.0020 0.0046 0.0068 std 0.0025 0.0039 0.0047 0.0071

20 features 20 features

mean 0.4461 0.5988 0.8689 1.1412 mean 0.4585 0.6232 0.8749 1.1505
std 0.0011 0.0012 0.0057 0.0063 std 0.0029 0.0062 0.0060 0.0069

The right part of the table 1 presents the mean and standard deviation values
of the two error measures, computed on the same datasets and the same number
of features for RU-NMF. We can see similar dependences as for the traditional
NMF: both errors decrease on the learning set while the number of features
grows, and both errors increase on the test set. As on NMF, standard deviations
seem to decrease on the test set. We can conclude that RU-NMF preserves almost
the same characteristics as traditional NMF.

Next we compare the accuracies of RU-NMF and NMF. The accuracy loss
ρ, defined by formula (5), computes the relative difference between the error
obtained with RU-NMF (err (RU-NMF)) and the error obtained with traditional
NMF (err (NMF)). A positive loss value means that NMF performs better than
RU-NMF. Table 2 reports the accuracy loss ρ, computed on the same 30 datasets.

ρ =
err (RU-NMF)− err (NMF)

err (NMF)
100% (5)
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Table 2. Accuracy loss ρ between RU-NMF and the traditional NMF, for 10, 15 and
20 features, %.

10 features 15 features 20 features

mean std min max mean std min max mean std min max

Learning set
MAE 0.17 0.09 0.03 0.38 0.98 0.34 0.49 1.71 2.78 0.67 1.38 4.27
RMSE 0.19 0.10 0.03 0.46 1.29 0.49 0.61 2.38 4.08 1.08 1.94 6.64

Test set
MAE 0.05 0.06 -0.06 0.18 0.29 0.19 -0.06 0.77 0.70 0.27 0.13 1.43
RMSE 0.05 0.07 -0.07 0.20 0.33 0.20 -0.04 0.79 0.82 0.31 0.12 1.53

The first conclusion that we can make when analyzing table 2 is that the
accuracy loss increases with the number of features, on both learning and test
sets, and for both error measures. In the worst case, the accuracy loss equals to
6.64%, for RMSE with 20 features, which is quite small. The lowest accuracy
loss (0.05%) is obtained with 10 features for both errors. Standard deviation
holds the same dependence: on test and learning sets, the accuracy loss is the
least dispersive with 10 features. When comparing the accuracy loss between
test and learning sets, we can note that the average loss is 3 times lower on test
than on learning, for both errors and for all the number of features: thus we can
say that RU-NMF has a lower relative loss between learn and test compared to
NMF. A thorough analysis of the losses obtained on the 30 sets has shown that
the accuracy loss on the test set is lower than the one on the learning set, in all
cases, whatever is the error and the number of features. In some runs, RU-NMF
has even a higher accuracy than NMF (see values in bold in table 2). This holds
for 23% and 3% of the runs with 10 and 15 features respectively.

In order to estimate if the loss in accuracy between RU-NMF and NMF is
statistically significant, we perform a statistical test. The null hypothesis H0

denotes “The loss in error between NMF and RU-NMF is null”. Student’s tests
with 99% confidence (α = 0.01) have been performed and the results are pre-
sented in Table 3. In this table “H0” represents the acceptance of the hypothesis
and “-” its rejection. Considering 10 features on both learning and test sets and
15 features on the test set, both MAE and RMSE are not increased by RU-NMF
(for example, the p-values with 10 features on MAE is equal to 0.8072). The null
hypothesis is thus accepted for these numbers of features. In other cases, the
errors on RU-NMF and traditional NMF models can not be considered as equal.

Considering this, we can conclude that a number of features equal to 10
provides not only the smallest values of errors on the test set, but also results in
the representative users of the highest quality. Thus the quality of representative
users can be considered as one of the potential indicators of the optimal number
of features (the number of features, that results in the smallest error on the test
set and that, thus, must be used in the factorization process). Also it may mean
that an inverse logical conclusion takes place, notably representative users will
be of a high quality only if the number of features is close to the optimal one.
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Table 3. Results of Student’s test with hypothesis H0: “The loss in error between
NMF and RU-NMF is null” for α = 0.01.

Learning set Test set

MAE RMSE MAE RMSE

10 features H0 H0 H0 H0

15 features - - H0 H0

20 features - - - -

5 Discussions and future work

This paper proposes a simple modification of the traditional matrix factorization
approach (RU-NMF), that aims at forming not only interpretable features, but
also features that represent elements from the reality (users). This work is a
preliminary one and its main goal is to show that such features can be formed.

We have shown that the features resulting from a traditional approach (NMF)
when the number of features is close to the optimal are naturally close to the
canonic form. Thus the model can be slightly modified so as to correspond to
real users, resulting in a small loss in the accuracy. When the number of features
is equal to 10 and 15, this loss is even not statistically significant on the test set.
Also it was shown that RU-NMF mainly preserves the same characteristics as
traditional NMF. Thus the both questions raised in this paper were answered.
The analysis of the accuracy loss has shown that the features formed by RU-
NMF consistently disturb the accuracy on the test set less than on the learning
set. This can be considered as a potential ability of factorization techniques with
features related to reality to limit overfitting problem faced by many others.

From our point of view, the proposed interpretation has several important
positive impacts on the way the model can be exploited. First, if such an inter-
pretation can be made, the recommendations can be easily explained. Indeed, if
each feature corresponds to a representative user, then the matrix V expresses
preferences of representative users on items. Meanwhile, each line in the matrix
U reveals interactions between the user, corresponding to this line, and a set
of representative users. Thus each user of the population is linearly mapped on
the basis related to representative users and the preferences of the latter ones
are used to estimate the ratings of the whole population. That makes the rec-
ommendation process ideologically close to the neighborhood-based approaches
with representative users used instead of neighbors. Second, as the estimated
ratings of all users of the population are computed through the representative
users, the latter can be viewed as mentor users in the population: the users who
represent the preferences of entire population. They can also be viewed as the
users to choose in poll studies. They can thus also be considered as those to be
tracked, so as to follow the evolution of the preferences of the population. Finally,
the approach we propose for this interpretation is automatic, it does not require
any human expertise, unlike of other works focused on features interpretation.
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In a future work, we would like to focus first of all on the verification of
the hypothesis that users associated with the features can be really considered
as representative ones. We consider that it can be done while solving the new
item cold-start problem. Indeed, knowing preferences of identified users on a
new item and their relations with all other users of the population (what is
represented by matrix U) we can try to predict ratings of other users on this
item. Accuracy of the resulting predictions will indicate if feature-related users
can actually represent the whole population. At the opposite of many state of the
art approaches that aim at tackling the cold-start problem, this one also requires
no information about the content of the items. Second revealed properties of RU-
NMF should be verified on other datasets. We would also like to investigate if
other factorization techniques (such as those, based on gradient descent and
alternating least squires) will result in features, that can be interpreted as real
users.
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