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Abstract. In this work, we propose a framework for classifier selec-
tion and fusion. Our method seeks to combine image characterization
and learning methods by means of a meta-learning approach responsible
for assessing which methods contribute more towards the solution of a
given problem. The framework uses three different strategies of classi-
fier selection that pinpoint the less correlated, yet effective, classifiers
through a series of diversity measure analysis. The experiments show
that the proposed approaches yield comparable results to well-known al-
gorithms from the literature on many different applications but using less
learning and description methods as well as not incurring in the curse of
dimensionality and normalization problems common to some fusion tech-
niques. Furthermore, our approach yields effective classification results
using very reduced training sets.

Keywords: meta-learning; diversity measure; rank aggregation; kendall
correlation

1 Motivation

The huge amount of visual data created through the popularization of mobile de-
vices (e.g., cell phone, camera, and tablet), makes us face many new challenges
unthinkable two decades ago. Image and video classification tasks have been
inserted in different and complex applications and the use of machine learning-
based solutions has become the most popular approach to several applications.
However, there is no single solution (learning or extraction technique) that solves
all the problems. Depending on the extraction and learning methods used might
create different classifiers that provide complementary information. One common
strategy that has been used to take advantage of these complementary informa-
tion and improve classification results is the Multiple Classifier System (MCS). In
MCS, the diversity of classifiers is an essential factor to reach better effectiveness
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results [17]. Diversity measures assess the degree of agreement/disagreement be-
tween classifiers and might identify potential classifiers for fusion. In this sense,
Kuncheva and Whitaker [18] studied different diversity measures as well as dis-
cussed their impacts on the final accuracy of ensemble systems. Different works
have been using diversity measures to select appropriate high-performance clas-
sifiers, but the challenge of finding the optimal number of classifiers for a target
task has not been properly addressed yet. In general, the proposed solutions rely
on the a priori use of ad hoc strategies for selecting classifiers, followed by the
evaluation of their effectiveness results during training. Searching by the optimal
number of classifiers, however, makes the selection process more expensive.

Currently, some of the most important challenges in MCS involve: choosing
the best diversity measure to be used; combining different available measures for
classifier selection in an ensemble system; and finding out whether or not the
existing measures describe the “real” diversity within the ensemble systems [4].
Typically, works in the literature have adopted a single diversity measure or
combined different measures using simple strategies (e.g., based on average of the
classification scores [5]). However, the aforementioned methods might not take
full advantage of the different opinions provided by all of the available diversity
measures. Moreover, another problem in MCS approaches is how to combine
different and non-correlated extraction and learning methods automatically.

In the literature, many works have been proposed to try sorting out problems
cited previously as for example, the well-known AdaBoost [13] and Bagging
[2] approaches. AdaBoost and Bagging ensemble approaches have been used
in several works in the literature due to their good results achieved in diverse
applications. However, previous work has also shown their limitations in terms
of efficiency, normalization, overfitting, and feature dimensionality problems.
In [21], for example, training time has been a concern when more features were
used to train an AdaBoost algorithm for face localization. The same problem
has been reported in [19], which trained an AdaBoost algorithm for tracking
indoor soccer players using videos. In [16], the authors discuss another problem:
the sensitivity of the classical AdaBoost algorithm to noisy datasets. They have
proposed different solutions to reduce the overfitting effect caused in those cases.
In [20], the authors discuss the problems of feature normalization in the context
of combining classifiers. More detail about tracking down fusion and classification
problems can be found in [6].

The combination of multiple feature vectors defined by different image de-
scriptors in AdaBoost and Bagging approaches is usually based on their concate-
nation (feature binding). Usually, when performing feature binding of different
nature/domain, normalization techniques should be applied to standardize all
feature values in the same range, which is a very challenging task [20]. Another
common problem faced when features are concatenated refers to the “curse of
dimensionality" [22]. The curse of dimensionality problem is related to the fact
that the dimension of the feature space increases in such a way that the available
training instances become indistinguishable and it is not enough for allowing the
definition of a good decision hyperplane [1].
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2 Objective and Contributions

In this work, we seek an alternative to AdaBoost and Bagging ensembles, which
might suffer curse of dimensionality and normalized problems. Our objective is
to propose a stacking framework, able to perform automatic fusion of different
visual properties (color, texture, and shape) and learning methods in existence
in the literature for different multimedia recognition tasks.

The framework assesses several descriptors and learning methods perform-
ing fusion in a final stage (late fusion) using a low-dimension feature vector
and simple (fast) classifiers. Another difference of the proposed method, when
compared to AdaBoost and Bagging techniques, is that the proposed framework
seeks greater diversity between the simple classifiers being able to choose only
the ones that effectively contribute to the solution of the classification problem
of interest.

Diversity may be obtained in different ways such as using: (a) different learn-
ing methods and the same training set; (b) the same learning method and dif-
ferent training samples; (c) different methods using different types of classifier
outcomes during the combination; and (d) predictions as new attributes to train
some learning method (meta-learning). In this work, we use two out of four ways
(a and d). We also use different visual properties (color, texture, and shape) to
each of the learning methods chosen to be simple classifiers. We follow the con-
cept that two instances of the same class have similar classification outputs for
the same set of classifiers [14].

In this regard, in this work, we investigate the combination of several learning
methods and image descriptors aiming at creating more effective classifiers. We
propose a framework for automatically combining the most discriminative clas-
sifiers using the support vector machine (SVM) technique, as well as exploring
the use of diversity measures to select the less-correlated, yet effective, classi-
fiers in three different selection strategies. We have performed experiments that
demonstrate that the proposed framework for classifier fusion yields comparable
results to the traditional fusion approaches but using less learning and descrip-
tion methods as well as not incurring in the curse of dimensionality problems,
which are common to some fusion techniques. Another major advantage of the
proposed method is that it yields good classification results using small training
examples being more robust to the small sample size problem common in many
classification techniques [1].

Our research hypothesis is that: Appropriate classifier selection approaches
can take advantage of classifier diversity to improve the accuracy performance
of multiple classifier systems.

The contributions and publications directly related to this thesis are: a frame-
work for classifier fusion through a meta-learning approach using Support Vector
Machines techniques [11]; a new classifier selection approach based on diversity
measures consensus [9,10]; a new classifier selection approach based on Kendall
correlation analysis [12]; and a new classifier selection approach based on rank
aggregation techniques [8]; a multimodal framework for automatic identification
of fruit flies (Diptera: Tephritidae) [7].
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3 The Classifier Fusion Framework

The objective of the fusion framework [10] is to exploit the degree of agree-
ment/disagreement among classifiers, concept known as diversity, to select the
most suitable ones to be used in a combination scheme.

Fig. 1: Framework for classifier selection and fusion [10]. The classifier selection process
is delimited by the dashed red line.

3.1 Formalization

Let C be the set of classifiers C = {c11, c12, . . . , c22, . . . , c|L||F|}, with cij = (li, fj),
where li is a learning method (e.g., Decision Tree, Naïve Bayes, kNN, etc.), and
fj is an image descriptor (e.g., Color Histogram). |C| = |L| × |F|, where L and
F are sets of available learning methods and image descriptors, respectively.
Initially, all classifiers ck ∈ C (1 < k ≤ |C|) are trained on a training set T . Next,
classifier results on a validation set V are computed and stored into a matrix
MV , where |MV | = |V | × |C| and |V | is the number of regions in a validation set
V . The actual classes of training and validation data points are known a priori.

The objective of our framework is to select a set C∗ ⊂ C of classifiers that
are good candidates to be combined. C∗ is determined by using MV as input
in an approach that exploits diversity measures (see Section 3.2). Note that C∗
can be used to compute a new matrix M∗V ⊂MV . Each selected classifier in C∗
is used to determine the class of an unknown instance. The outcomes of those
classifiers are later combined by a novel fusion technique (majority voting, SVM,
etc.), which is responsible for defining the class of the unknown instance. Fig. 1
illustrates the framework FSVM for combining classifiers.

3.2 Selection based on Consensus

Fig. 2 illustrates the adopted five-step approach for selecting classifiers based on
diversity measures, previously introduced in [10]. First, diversity measures (set
D in Fig. 2) are used to assess the degree of agreement among available classifiers
in C by taking into account the MV matrix previously computed. That step is
represented by arrow (a) in Fig. 2. Pairs of classifiers are then ranked according
to their diversity score. Each diversity measure defines a different ranked list
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and, at the end of this step, a set R of ranked lists is produced (arrow (b)). In
the following, a novel set of ranked lists Rt is computed by selecting the top
t pairs of classifiers from each ranked list in R (arrow (c)), and a histogram
H that counts the number of occurrences of a classifier in all ranked lists of
Rt is computed (arrow (d)). Finally, the most frequent classifiers in H, whose
accuracy is greater that a given threshold T , are combined by a fusion approach
(arrow (e)). T is a threshold defined in terms of the average accuracy among all
classifiers using the validation set V .

Fig. 2: The five steps for classifier selection are: (a) Computation of diversity measures
from the validation matrix MV ; (b) Ranking of pairs of classifiers by their diversity
measure scores; (c) Selection of the top t = 100 ranked pairs of classifiers; (d) Compu-
tation of a histogram H that counts the number of occurrences of each classifier; (e)
Selection of classifiers |C∗| based on their occurrence in H and on a defined threshold
T [10].

3.3 Selection based on Kendall Correlation

Let C be the set of classifiers created by the combination of learning methods
and image descriptors. Let P = {p1, p2, . . . , p|C×C|} be a set of all possible pairs
of classifiers, i.e., pl = (ci, cj), where (ci, cj) ∈ C × C. Let D = {d1, d2, . . . , d|D|}
be a set of diversity measures, such that each diversity measure dk ∈ D defines
a distance function ρ : P → R, where R denotes real numbers. Equations de-
scribed in paper [18] that define different criteria for implementing the function
ρ. Consider ρ(pl) ≥ 0 for all pl ∈ P and ρ(pl) = 0, with pl = (ci, cj), if ci = cj .
The distance ρ(pl) among all pairs of classifiers pl = (ci, cj) ∈ C × C can be
computed to obtain a |C| × |C| distance matrix A. Given a diversity measure
dk ∈ D, we can compute a ranked list Rdl

by taking into account the distance
matrix A. The ranked list Rdl

={p1, p2, . . . , p|C×C|} (where pl = (ci, cj) is a pair
of classifiers) can be defined as a permutation of the collection P, such that, if
pl is ranked at lower positions than pm, i.e., pl is ranked before pm, then ρ(pl)
< ρ(pm). In this way, pairs of classifiers are ranked according to their agreement
score defined in terms of a diversity measure.

We exploit the correlation of ranked lists of pairs of classifiers to select the
more appropriate ones to be combined. In this thesis, we use theKendall tau rank
correlation coefficient (τ) [15] to measure the degree of concordance between two
different ranked lists of the same set of observed samples. TheKendall correlation
τ(Rdi

,Rdj
) between two ranked lists Rdi

and Rdj
is defined in terms of the

number of concordant pairs NC in Rdi
and Rdj

, the number of discordant pairs
ND, and the number of positions n in the ranked lists.

We propose a novel strategy, named Kendall classifier selection (KCS), to
define appropriate classifiers to be used in the classification framework presented
in [10]. KCS makes use of the degree of agreement of different diversity measures.
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This agreement is measured in terms of the Kendall correlation among ranked
lists of classifiers.

Let dH1 and dH2 be the diversity measures with the highest correlation scores,
which are defined by the Kendall correlation. Let RdH1

and RdH2
be the ranked

lists of pairs of classifies defined by dH1
and dH2

, respectively. KCS defines the
top-ranked pairs of classifiers in RdH1

and RdH2
as the most appropriate ones to

be used in the classification framework presented in [10]. We also tested in our
experiments selected classifiers defined in terms of the lowest correlated diversity
measures (dL1 and dL2). In this case, we use classifiers defined in the top-ranked
positions of RdL1

and RdL2
.

Fig. 3: The six steps for new classifier selection are: (a) Compute diversity measures
from the validation matrix MV ; (b) Sort R lists by diversity measure scores; (c) Com-
pute Kendall correlation coefficients among all ranked lists of classifiers R; (d) Select
RdH1

and RdH2
or RdL1

and RdL2
ranked lists to be used in the next step; (e) Rt lists

with top t = 100; (f) Compute a histogram H that counts the number of occurrences of
each classifier; (g) Select the most appropriate classifiers |C∗| based on their occurrence
in H and a defined threshold T [12].

Figure 3 summarizes in six steps the new approach for selecting classifiers
based on Kendall correlation. It is important to highlight that all steps regarding
the selection of classifiers for fusion are performed during the training phase of
the decision-making framework. Using a validation set separated during training
allows us to evaluate different descriptors and learning techniques, assess their
outcomes when classifying the validation examples, and properly selecting, by
means of the proposed Kendall -based methodology, the most suitable classifiers
for deployment during testing.

3.4 Selection based on Rank Aggregation

We propose to use multiple diversity and evaluation measures (Kappa, Tau,
and accuracy) to determine which classifiers should be combined to improve the
classification results in a given problem. Recall that different diversity measures
would rank pairs of classifiers differently. In many situations, rank aggregation
methods have been used as a way of obtaining a consensus ranking when multiple
ranked lists are computed by different approaches. Rank aggregation has also
been treated as the task of combining different ranked lists (or scores) in order
to obtain a single, and more accurate, ranked list. For classification tasks, the
combination with the lowest error occurs when the classifiers being combined are
non-correlated (high diversity) and yields high accuracy rate [3]. In our approach,
each considered measure (both diversity and evaluation measures) produces a
ranked list of pairs of classifiers. A rank aggregation method combines all ranked
lists, producing a single combined ranked list, which is used to identify pairs of
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classifiers with good classification performance and high diversity. In the next
section, we formally define the proposed rank aggregation approach.

Figure 4 summarizes the six-step approach for selecting classifiers based on
rank aggregation.

Fig. 4: The six steps of the new classifier selection are: (a) Compute diversity mea-
sures from the validation matrix MV ; (b) Sort R lists according to scores of diversity
measures; (c) Compute rank aggregation using all ranked lists of classifiers (R) and
evaluation measures (E); (d) Create a single list Rt

c, which list has the top t = 100;
(e) Compute a histogram H that counts the number of occurrences of each classifier;
(f) Select the most appropriate classifiers |C∗| that satisfy a defined threshold T [8].

4 Experiments and Discussion

This section presents some of several experiments that we performed to evaluate
the robustness of our fusion framework with each selection process [8, 10,12].

4.1 Effectiveness Analysis

In these experiments, six fusion techniques were compared: our approach using
SVM (FSVM-PK-49) considering |C| = 49, two Adaboost approaches (BOOST-
DEFAULT and BOOST-49), Bagging (BAGG-49), and Majority Voting (MV-
49). Recall that using |C| = 49 means that all available classifiers (7 learning
methods × 7 image descriptors) are employed in the fusion process. FSVM-
PK means the SVM technique uses a polynomial kernel to combine different
simple classifiers in our approach. Furthermore, we have included the best single
classifier (no fusion) between all tested learning methods.

Table 1 presents the results obtained for each fusion technique and the best
single classifier using one of four datasets considered in the work and consider-
ing three different evaluation measures (Accuracy, Kappa, and Tau). Notice that
BOOST and BAGG techniques show up with the suffix ALL, which means the
concatenation of the feature vectors produced by the seven different image de-
scriptors considered. Thus BAGG-49-ALL and BOOST-49-ALL techniques refer
to the use of 49 iterations and seven image descriptors (hybrid fusion).

In these experiments, our late fusion approach (FSVM-PK-49), which uses
meta-learning on the outputs of all available classifiers yielded a slightly better
classification result considering the three evaluation measures, when compared
to other techniques in any tested datasets. However, the achieved results when
considering the selection of the most appropriate descriptors and learning meth-
ods automatically during the fusion process are more interesting.
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Important to note that BOOST and BAGG techniques use a fusion hybrid
(feature and decision level fusion) to achieve similar results to our framework
that uses only decision level fusion. We also computed the confidence intervals
to verify if the results obtained by the proposed framework differ from those
observed for the baselines. We could observe that FSVM-PK-49 has no statistical
difference between the best baseline in the Caltech dataset. Furthermore, our
late fusion approach (FSVM-PK-49) achieves similar results to BOOST-49-ALL
(hybrid fusion).

Dataset Techniques Measures
Accuracy Kappa TAU

Caltech

FSVM-PK-49 47.05%±1.77 0.45±0.02 0.46±0.02
BOOST-49-ALL 46.90%±0.63 0.45±0.01 0.46±0.01
BAGG-49-ALL 43.01%±1.38 0.41±0.01 0.42±0.01
SVM-PK-LAS 41.30%±0.41 0.39±0.00 0.40±0.00
MV-49 41.02%±0.46 0.38±0.00 0.40±0.00
BOOST-DEFAULT-ALL 39.92%±0.57 0.38±0.01 0.39±0.01

Table 1: Classification effectiveness of the proposed framework and baselines [10].

4.2 Training Set Size Impact

This section shows a behavioral study among the classifiers compared in Table 1
using reduced training sets. In our experiments, we conducted a study consider-
ing five different sizes for the training set (T ): 8%, 16%, 33%, 67%, 100%, which
represents 5%, 10%, 20%, 40% and 60% of the entire datasets, respectively. These
subsets have been selected from original training set. We use again the 5-fold
cross-validation protocol previously adopted in our experiments.

Fig. 5 shows the results for one of four datasets (Caltech) used in our work.
The x-axis denotes the number of images in the training set and the y-axis
represents the average accuracy in the testing set. The FSVM-PK-49 approach
using a subset of 8% of training set achieves 39.52% of accuracy. In the same
training set, BOOST-49-ALL yields 32.33%, which means that our approaches
have a gain of more than 19% compared to the best baseline. In the subset
16%, our approaches are still better and achieve accuracy results of 40.67%
(FSVM-PK-49) against 37.24% of the BOOST-49-ALL. That represents a gain
of more than 7% in classification accuracy. From the subset 33% to 100%, the
best baseline yields similar performance to our approach. In summary, we can
see that the proposed approach are able to learn from small training sets.

4.3 Classifier Selection Approaches

This section discusses the results regarding the effectiveness and efficiency of
the proposed framework using one of the two different datasets performed in
our work. In this case, the Urban dataset has been used. In our experiments,
we have used Double-Fault Measure (DFM), Q-Statistic (QSTAT ), Interrater
Agreement k (IA), Correlation Coefficient ρ (COR), and Disagreement Measure
(DM). Our framework is denoted as FSVM-NORM-|C∗|, where NORM means
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the normalized polynomial SVM kernel used in our experiments and |C∗| is num-
ber of simple classifiers that will be combined by the SVM-based meta-learning
technique.

Table 2 shows the average kappa indices for all performed experiments with
Urban dataset. The columns refer to the number of classifiers |C∗|, which have
values range from 5 to 36, where 5 is the lowest number of classifiers selected
and 36 is the total amount of possible classifiers that can be selected (six image
descriptors and six learning methods result in 36 different simple classifiers).

In these experiments, we compare three selection strategies: Consensus,Kendall,
and Rank Aggregation. Consensus refers to the strategy described in Section 3.2,
which uses all the five diversity measures in the selection process. Kendall, in
turn, refers to the strategy described in Section 3.3, which uses the two less
correlated diversity measures (in the case, IA and QSTAT ) in the selection pro-
cess. These diversity measures were defined according to an a priori correlation
analysis. Finally, Rank Aggregation refers to the use of the rank aggregation
strategy described in Section 3.4. In Table 2, we highlight in blue the number
minimum of classifier that each approach needs to achieve similar result than
the FSVM-NORM-|C∗| using all classifiers (|C∗| = 36). Consensus approach
need to use |C∗| = 15 classifiers. Kendall approach achieves similar result using
|C∗| = 10 classifiers. Finally, the rank aggregation approach with configura-
tion Kappa+DFM+IA+QSTAT is able to yield very effective results with only
|C∗| = 5 classifiers.

We also computed the confidence intervals to verify if the results obtained
by the proposed fusion approach differ from those observed for the baselines.
We could observe that our approach achieves similar results to those observed
for almost all baselines compared, but with fewer classifiers. Please, refer to the
associated thesis1 for more details regarding performed experiments.
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Fig. 5: Accuracy scores of all classifiers us-
ing training sets with different sizes [10].

Urban Dataset

Approaches Number of Classifiers |C∗|
5 10 15 36

Consensus [10] 0.564 0.570 0.594 0.612
Kendall [12] 0.566 0.592 0.604 0.612
Rank Agg. [8] 0.593 0.592 0.602 0.612

Table 2: Kappa indices computed for each
selection approach using different number
of classifiers (|C∗|) in the Urban dataset.

5 Conclusion

This work presented a framework for selection and fusion of simple classifiers
using diversity measures and meta-learning on top of classifier outcomes. The
1 www.ic.unicamp.br/~ffaria/ffaria_final_thesis.pdf

www.ic.unicamp.br/~ffaria/ffaria_final_thesis.pdf
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main novelty of this work relies on the use of diversity measures to determine
which learning and image descriptor methods are more suitable to be combined
in a given classification problem. Thus, three different strategies for classifier
selection have been proposed (Consensus, Kendall correlation, and Rank Ag-
gregation). This work resulted in papers in three important international jour-
nals [7,8,10] and three conference papers [9,11,12]. In addition, two articles have
been submitted to international journals.For future work, we plan to investigate
additional strategies and metrics for improving the classifier selection process,
find the optimal diversity measures set for each application, test non-pairwise
diversity measures, and perform experiments in other application domains.
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