
Heterogeneous Dataflow Hardware Accelerators
for Machine Learning on Reconfigurable

Hardware ?

Hendrik Woehrle1, Johannes Teiwes2, Mario Michael Krell2, Anett Seeland1,
Elsa Andrea Kirchner1,2, and Frank Kirchner1,2

1 German Research Center for Artificial Intelligence, DFKI Bremen, Robotics
Innovation Center, Robert-Hooke-Str. 1, 28359 Bremen, Germany

hendrik.woehrle@dfki.de,
2 University of Bremen, Faculty 3 – Mathematics and Computer Science, Robotics

Lab, Robert-Hooke-Str.1, 28359 Bremen, Germany,

Abstract. The trend to develop increasingly more intelligent systems
leads directly to a considerable demand for more and more computa-
tional power. However, in certain application domains, such as robotics,
there are several technical limitations, like restrictions regarding power
consumption and physical size, that make the use of powerful generic
processors unfeasible. One possibility to overcome this problem is the
usage of specialized hardware accelerators, which are designed for typi-
cal tasks in machine learning. In this paper, we propose an approach for
the rapid development of hardware accelerators that are based on the
heterogeneous dataflow computing paradigm. The developed techniques
are collected in a framework to provide a simple access to them. We
discuss different application areas and show first results in the field of
biosignal analysis that can be used for rehabilitation robotics.
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1 Introduction

Machine learning techniques are widely used nowadays for a broad range of
applications. Depending on the specific application, they are employed either
on commodity hardware like desktop PCs or powerful high-end systems, like
clusters. The primary objective in these settings is to achieve a good accuracy
of the methods. Other objectives, like computational efficiency and memory
consumption are often regarded as less important or even entirely ignored.

However, with the increasing importance of portable and embedded sys-
tems and in the eras of Big Data and wearable computing, these formerly sec-
ondary objectives become more and more important. Especially in the case of
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autonomous systems and robotics, stringent requirements have to be satisfied: 1)
the available physical space is limited, which often prohibits the usage of off-the-
shelf components like desktop PCs, 2) the power consumption should be small
to reduce heat generation, allow the usage of small accumulators, and increase
the running time of the system, 3) often real time processing is needed, since the
systems have to work in a real world environment and have to keep up with the
environment.

1.1 The Problem of Generic Processors

These requirements make the usage of standard generic processors suboptimal.
The main purpose of generic processors is the execution of arbitrary software, but
not the high performance execution of specific algorithms. Consequently, they
are 1) either bulky and powerful, or small but weak, 2) waste to much energy for
the computational power they provide, 3) can not guarantee real time processing
themselves, but require real time operating systems. Fortunately, genericness is
not always required. Especially many algorithms in machine learning and signal
processing depend on a small set of operations like matrix-vector computations
(e.g., in neural networks, and support vector machines (SVMs)) or convolution
(e.g., in finite impulse response (FIR) filtering or edge detection in image pro-
cessing).

The above stated facts make it possible to use a dichotomy here: combine
a generic, but weak CPU for software tasks, with application specific hardware
accelerators for high performance computations. This pattern is widely used. Ex-
amples are the usage of specific accelerators, e.g., to reduce the energy consump-
tion in smart phones [1] or to perform machine learning tasks in the Microsoft
Kinect [2]. In these devices application specific integrated circuits (ASICs) are
used to fulfill a single, specific task. ASICs can not be transferred to other appli-
cations - every time the requirements change, a new ASIC has to be constructed.
This time consuming and expensive and therefore only reasonable if large quan-
tities are produced. Consequently, ASICs are inflexible, since it is impossible to
consider improvements of the underlying algorithm after the ASIC is manufac-
tured. This is not feasible for robotics or machine learning in mobile systems.

Another example is generic computing on graphics processing units (GPUs),
which is also often used in the machine learning community [3]. However, GPUs
have a high power consumption and are rarely available as individual chips to,
e.g., place them on printed circuit boards (PCBs) that have to be built to satisfy
the space constraints in robotic systems.

1.2 Field Programmable Gate Arrays

One solution approach to overcome these problems is based on Field Programmable
Gate Arrays (FPGAs). FPGAs consist of generic logic elements that can be con-
figured to form specific circuits to implement an algorithm in hardware. This has
several advantages for machine learning and robotics. First, the hardware im-
plementation of an algorithm can provide significant performance improvements



while keeping the power consumption low. Second, since the configuration pro-
cess is very flexible, the disadvantages of ASICs regarding development costs do
not apply here. The algorithm can be modified if needed, since the circuit can
be changed by a reconfiguration of the FPGA.

Traditionally, FPGAs were used as simple, but flexible logic elements or
to provide other simple functionalities in electronic devices. However, in the
last couple of years the application areas were extended to other fields, such as
digital signal processing. Vendors integrate components into FPGAs to further
improve the usability in these application areas. Examples are DSP slices such as
the DSP48 slice in Xilinx FPGAs [4] to efficiently perform multiply-accumulate
operations, or memory elements such as block RAMs [5] to buffer data. A further
advantage is the inherent real time capability of the FPGA. It is possible to
design the circuit in such a way that it executes an algorithm in an exact number
of clock cycles to meet time constraints.

However, these advantages are not for free: a major problem of FPGAs is
the design complexity that requires careful attention of the FPGA designer. For
example, the designer has to decide for every arithmetic operation, if it should
be performed as a single or double precision floating or even fixed point opera-
tion. To save resources, the latter is preferred, but this can result in numerical
problems. Furthermore, the exact timing of all operations has to be specified
and the circuit must be made accessible for the software side. Up to now, this
design complexity has prevented FPGAs from being widely used in the machine
learning community.

1.3 FPGAs for Machine Learning

Often, FPGAs are still used as classical electronic components: to provide glue
logic or otherwise simple functionality like low-level communication. However,
there are various approaches that use FPGAs for increasingly more complex
tasks that range from simple signal processing to complex control architectures.

Furthermore, FPGA implementations for different popular machine learning
applications are presented in the literature, e.g. neural networks [6] or support
vector machines [7]. However, most approaches are singular, i.e., they conduct
just a single functionality, without any possibility of generalization or trans-
ferability to other applications. A generic framework for machine learning and
robotics has been proposed in [8]. However, due to its design, it is only suitable
for stationary high performance systems, but not for robotics. Furthermore, the
framework is only usable in a concrete hardware setup. In order to facilitate the
usage of FPGAs for the development of innovative machine learning-based appli-
cations in future robotic and mobile systems, the typical engineering problems
have to be hidden or simplified. In order to achieve this, the following points are
of importance:

1. The possibility to rapidly implement typical algorithms in the field of ma-
chine learning as hardware accelerators.

2. It should be possible to easily integrate third party implementations, so
called intellectual property (IP) cores, into the framework.



3. One should be able to easily verify the functionality of the hardware accel-
erator.

4. Mechanisms to simplify the accessibility to the hardware accelerator from
the software side have to be provided.

5. Mechanisms to automatically optimize the design regarding required FPGA-
resources, given a set of defined constraints, are required.

In this paper, we discuss an approach to meet these requirements by proposing
the reconfigurable S ignal Processing And C lassification Environment (reSPACE ).
It is designed to reduce the complexity of development while retaining the most
important advantages especially in the field of machine learning and signal pro-
cessing, the later is especially relevant since often an appropriate feature ex-
traction is of high importance [9]). We illustrate the properties of reSPACE on
an example of biomedical signal processing, namely the realtime prediction of
movements based on single trial analysis of the human electroencephalogram.
In future, this can for example be used in the field of rehabilitation robotics
embedded in a wearable assistive robotic device.

2 Accelerator Hardware Architecture

The proposed framework is based on the static heterogeneous synchronous data-
flow computing paradigm. A dataflow-like concept is used in frameworks that are
popular for machine learning such as MDP [10], scikits-learn [11] or pySPACE [12].
Using reSPACE, it is easy to implement FPGA-based application specific data-
flow accelerators (DFAs) that speed up machine learning operations.

2.1 Heterogeneous Synchronous Dataflow Computing Paradigm

In the dataflow computing paradigm, data is streamed through a sequence of
algorithms and transformed on its way through them [13]. In the following, we
call this sequence a flow, and the implementations of the specific algorithms
nodes. Since it is possible to combine different nodes, we use a heterogeneous
dataflow paradigm. Since the structure is pre-defined for a specific application,
it is a static dataflow. However, in contrast to software dataflow concepts, the
data is shifted by one step through the flow on each clock tick of the system,
resulting in a synchronous design.

In reSPACE, we provide two different operating modes of the system. The
stream mode allows to process an ongoing stream of data. This mode is required
when the signal for processing originates directly from analog to digital con-
verters, e.g., force-torque sensors or electrodes for reading biosignals. The other
operating mode is designed to process separate windows of data, where the sam-
ples within a window are adjacent to each other. Examples are feature vectors
consisting of single feature elements or images that consist of pixels. We use a
model-based design approach here that is currently based on System Genera-
tor for DSP [14] or VHDL. To implement a complete system, we provide two
different alternatives.



Either a library of predefined, parametrized nodes can be used, that contains
basic, widely used algorithms such as FIR and IIR filters, direct current offset
removal, standardization, etc., are provided as directly usable nodes that can be
directly arranged to build up the overall system. These nodes are generic and
can be instantiated using different sets of parameters. This allows the designer
to configure the overall system for, e.g., different number of channels or different
precision of the calculations.

The other opportunity is customizable circuit generation for matrix-multiply
based algorithms. We provide mechanisms to generate specific circuits for re-
source efficient parallel matrix operations. The multiply accumulate operations
are mapped to the DSP slices of the FPGA. This is done using a domain spe-
cific language that allows to specify a sequence of matrix vector operations and
choose a parallel or serial implementation. The parallel implementation uses a
minimal number of clock cycles but high amount of logic resources, whereas the
serial implementation is resource efficient but takes more cycles to run.

2.2 System Architecture

There are at least two possibilities for the integration of DFAs into a system:

Inside a System on Chip (SoC) In this setup, the DFA is connected to a
host CPU by some type of bus system, e.g., an AXI bus [15]. This setup is
applicable if the main system is controlled by software that is running on
the host CPU.

Direct access This setup is useful if certain processing should be performed in
a decentralized way. Applications are sensor data processing in proximity to
a sensor to, e.g., perform complex preprocessing or dimensionality reduction
of the data or to implement intelligent control algorithms.

In the SoC setup, the DFA has to be accessed from software. The software
is responsible to either transfer the data or results to and from the DFA or to
initialize the transfer if direct memory access is used. For this, device drivers are
required. The implementation of device drivers is a tedious and error prone task.
Therefore, reSPACE supports this task by using automatic driver and middle-
ware generation (see Sec. 3). In contrast, the direct access setup requires that
the DFA has to be accessed directly from other hardware components or from a
remote hardware system via low-level communication interfaces. Here, reSPACE
hides the technical details and allows to focus on the algorithm development.

2.3 Limitations

A general problem for FPGA-accelerated machine learning operations is the
amount of available memory. The amount of data, that can be stored in the
available block RAMs of even the current high-end FPGA devices, is in the
range of some dozens of MB [16]. Hence, the storage of large amounts of data
inside the FPGA itself is usually not feasible in practice, and external memory
is needed. Another algorithmic solution approach is the usage of incremental or
online learning methods.



Fig. 1. Workflow for hardware accelerator integration. The processing-flow created by
Matlab and System Generator gets integrated into the SoC using the Xilinx toolchain.
Output products of the Xilinx toolchain are used for automatic driver and middleware
generation. Third party software (e.g., bootloader and kernel) can be added to, e.g.,
get a bootable medium.

3 Software Infrastructure and Integration

In the in SoC setup, the DFA is used to accelerate a specific software task.
Usually, an operating system, like Linux, is running on the host CPU. Hence,
to access the DFA from a software application, device drivers are needed that
interface with the DFAs and run as kernel modules.

3.1 Automatic Software Generation

In the given context, however, these drivers have a limited duty: the transfer of
the data from main memory to the DFA and collection of the results, while the
internal business logic of the driver is neglectable and can be implemented in
the user space. If the systems physical memory-map is known, it is possible, to
generate the required drivers fully automatically.

The same approach can be used to automatically generate additional inter-
face libraries to other higher-level languages, such as Python. Consequently, the
DFA can be directly used from popular machine learning frameworks with a
minimum of effort. Currently, we provide automatic generation of code to in-
tegrate reSPACE nodes into pySPACE [12] to allow the use of software-centric
mechanism like cross validation and performance evaluation. We refer to this
process as automatic driver and middleware generation. For details about this
software generation process, see Fig. 1.

3.2 Functional Verification

Still, the design and implementation of DFAs can be a complex and error-prone
task, due to the FPGA properties, like cycle-accurate timing and numerical
issues due to fixed-point computations that need to be solved. Accordingly, a
high effort is required in order to verify and ensure the functionality of the
DFAs. In reSPACE, we use a verification approach that is based on pySPACE. In
pySPACE, it is straightforward to generate test data and information regarding



Fig. 2. Dataflow paradigm and verification for reSPACE generated flows. In simulation,
the flow can be verified on node level whereas the final implementation inside the FPGA
fabric is verified by comparing the final processed data with precomputed reference data
inside pySPACE.

the configuration of the specific nodes. The pySPACE flows can be augmented
with helper nodes that monitor and store all data persistently that is passed
through them.

Simulation Verification Our tools for hardware verification build on this func-
tionality of pySPACE. The intermediate data can be used directly to gen-
erate testbenches. These allow the verification of the hardware accelerator
in simulation and an in-depth investigation and analysis of any differences
between the pySPACE results and intermediate results of the dataflow hard-
ware accelerator. These might occur due to, e.g., fixed-point computations
that are usually employed in FPGAs.

Hardware Verification Besides the simulation based verification, reSPACE
also supports verification directly on the target system. There, we use a hi-
erarchical approach to verify the availability and functionality of the dataflow
hardware accelerator. First, it is tested if the Linux device file is accessible
and reachable from the software side. Second, a dedicated test code can be
read from the device to check if the dataflow hardware accelerator is avail-
able. Finally, the persistent test data is used to test the dataflow hardware
accelerator for full functionality. Therefore, the test data is used for stimu-
lation and comparison with the results of the hardware accelerator.

4 Applications

In this section, we outline how the proposed framework can be used for different
application areas. We briefly show results for online electroencephalogram (EEG)
analysis as a more extensive example.



Fig. 3. Biosignal-augmented exoskeleton. The operator controls a robotic arm in a
virtual environment (right). The task is to move the end-effector of a robotic arm like
in an hot wire game through a labyrinth without touching it. For control, the operator
wears an exoskeleton that maps the position of the operator’s hand to the end-effector.
The operator’s EEG is continuously analyzed to detect upcoming movements that can
be used to adapt the control algorithms of the exoskeleton.

4.1 Biomedical Signal Processing for Teleoperation and
Rehabilitation Robotics

Performing teleoperation of robotic systems using current input devices like joy-
sticks is usually a demanding task. To simplify this, the exoskeletons can be
used as more intuitive command interfaces. The details of the investigatio have
been described in [17, 18] and are depicted in Fig. 3. To enhance the movability
of the exoskeleton, the joint control algorithms can be enhanced by integrating
predictions of upcoming movements based on the detection of movement-related
cortical potentials [19]. For the predictions, the EEG of the operator is contin-
uously analyzed by a movement prediction system, which performs a prediction
each 50 ms. EEG data is high dimensional (64 channels sampled at 5kHz), re-
quire a range of different signal processing and machine learning operations to
detect the to upcoming movements, and fast computations, since the processing
has to be finished before a movement is executed. Since the operator should be
able to move freely, the exoskeleton has to be be independent from stationary
hardware. In future, the exoskeleton will also be used as a rehabilitation sys-
tems [20]. Therefore, all computations should be performed in devices that are
embedded in the exoskeleton, were reSPACE can be used to map the operations
to FPGAs to provide the necessary computational power. For the detections, dif-
ferent signal processing operations have to be applied to the data online. We use
the following procedure: DC offset removal, anti-alias filtering and downsampling
to 20 Hz, spatial filtering, feature vector extraction, standardization, and classi-
fication using a passive-aggressive perceptron, whose parameter c was optimized
using a grid search. We realized this twice using pySPACE and reSPACE and
compare the classification and computation performance for both approaches.

The obtained results are shown in Table 1. It can be observed that there exist
no major differences regarding classification performance. However, by using the
DFA an ≈ 7× speedup is achieved.



Table 1. Application oriented metrics for online and pseudo-online sessions in terms of
Balanced Accuracy (BA) and computation time for 10 recording sessions on 3 subjects.
The BA is defined as the mean of true positive and negative rates. The two different
devices were a mobile processor (MP, ARM Cortex A9, 666 Mhz) and a combined
mobile processor with DFA (running at 100 Mhz). All computations on the MP were
performed as double precision floating point operations, all computations in the DFA
used fixed point arithmetic. The reported computation times are the amount of time
that is required to process 1s of EEG data for the different processing platforms.

Performance Mobile CPU Performance Mobile CPU + DFA

BA (%) 76.012 ± 4.106 75.717 ± 4.018

Computation time (ms) 1199.943 ± 7.170 174.403 ± 5.872

4.2 Further Application Areas

There are various other application areas in machine learning, robotics and au-
tonomous systems that would gain a substantial benefit from FPGA-based ac-
celerators. Obvious examples are various image processing techniques, such as
SURF generation [21] and traffic sign detection [22] or enhancing the control of
robots [23].

5 Conclusion and Future Work

In this paper, we discussed the necessity, requirements and state of the art of
FPGA-based machine learning accelerators that should be employed in mobile
and robotic systems. As a solution to the current problems, we proposed our
framework reSPACE that supports the implementation of such accelerators. We
described the techniques that we use in reSPACE to simplify the design process
in order to allow algorithm developers to use FPGAs and to verify the resulting
hardware implementations in simulation or in the final system. In future, we
will enhance the framework to improve the usability further. First, we want
to transfer all components to pure VHDL implementations to achieve a higher
degree of vendor and third party independence, and to provide the framework
as open source to allow it to be used easily by machine learning and robotics
researchers.
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