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Preface
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feedback from senior researchers in machine learning, data mining and related areas.
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preparation of their PhD dissertations in machine learning and data mining.
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for oral presentation and 11for poster presentation. All submissions were reviewed
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and presentation. The program of the PhD session consisted of oral and poster
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Antwerp, Belgium).
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thank the local organization team of ECML/PKDD 2014, and in particular Amedeo
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Search for User-related Features in Matrix
Factorization-based Recommender Systems

Marharyta Aleksandrova1,2, Armelle Brun1, Anne Boyer1, and Oleg Chertov2
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{marharyta.aleksandrova,armelle.brun,anne.boyer}@loria.fr,
chertov@i.ua

Abstract. Matrix factorization (MF) is one of the most powerful ap-
proaches used in the frame of recommender systems. It aims to model the
preferences of users about items through a reduced set of latent features.
One main drawback of MF is the difficulty to interpret the automatically
formed features. Following the intuition that the relation between users
and items can be expressed through a reduced set of users, referred to
as representative users, we propose a simple modification of a traditional
MF algorithm, that forms a set of features corresponding to these repre-
sentative users. On one state of the art dataset, we show that proposed
representative users-based non-negative matrix factorization (RU-NMF)
discovers interpretable features and does not significantly decrease the
accuracy on test with 10 and 15 features.

Keywords: Recommender systems, matrix factorization, features inter-
pretation.

1 Introduction

Recommender systems, that belong to machine learning area, aim to estimate
preferences (ratings) of target users on previously non-seen items, in order to
recommend them those items, which would probably satisfy these target users
[1]. Recommendation algorithms are used in a wide area of real services starting
from electronic commerce to considering search engines as a special type of
recommender systems.

In order to estimate unknown preferences, recommender systems can use in-
formation about the content of the items (content-based methods), preferences
of other users (collaborative filtering) or the both sources (hybrid approaches)
[1]. In the frame of collaborative filtering we can outline such approaches as
neighborhood-based [1] and matrix factorization-based techniques [2]. The first
approach searches for neighbor users, who have similar preferences as the tar-
get user and recommends items that were highly rated by his neighbors. Thus,
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2 Marharyta Aleksandrova, Armelle Brun, Anne Boyer, Oleg Chertov

if needed, recommendation can be easily explained: a certain item was recom-
mended because it was highly rated by the users having similar tastes to the
active one.

Matrix factorization relies on the idea that there is a small number of latent
factors (features) that underly the preferences (interactions) between users and
items. As these features are defined so as to fit at best the data, no obvious
interpretation can be made of them and as a result, unlike neighborhood-based
approaches, recommendations have no obvious explanation. However, as it was
shown in [3], providing explainable recommendation remains important for the
users fidelity.

Based on the assumption that the preferences between users are correlated,
we assume that within the entire set of users, there is a small set of users that
have a specific role or have specific preferences. These users can be considered as
representative of the entire population and we intend to discover features that
are associated with these representative users. We think that if the discovered
features would represent elements from the real world, they could not only be
interpretable, but the recommendations could also be easily explained, similarly
to the explanation provided by neighbor-based approaches, where neighbors are
replaced by representative users. In order to identify these representative users we
propose a representative users-based non-negative matrix factorization approach
(RU-NMF), which is a slight modification of traditional non-negative matrix
factorization technique based on multiplicative update rules.

This paper is a part of the work in progress about the discovery of features re-
lated to reality in matrix factorization-based approaches. In the current research
we rise two main questions: (a) can MF algorithms result in features that can be
associated with real users? (b) will the quality of recommendations be reduced
if such associations are made explicit? We also point out some potential benefits
of the resulting model. To the best of our knowledge, this work is the first one
that is interested in not only interpreting features in MF-based recommendation
approaches, but also in constraining these features so that they correspond to
real elements of the system.

2 Related works

Let M be the number of users and N the number of items. The interaction
between these entities is usually represented under the form of a matrix R
(dim(R) = M × N) with elements rmn corresponding to the rating assigned
by the user m to the item n. Thus the recommendation problem is reduced to
the task of estimating the missing values in R.

MF techniques decompose the original rating matrix R into two low-rank
matrices U (dim(U) = K ×M) and V (dim(V ) = K × N) in such a way that
the product of these matrices approximates the original rating matrix R ≈ R∗ =
UTV with respect of the condition of minimal loss. This task is usually solved
by optimization methods, such as gradient descent or alternating least squares
[4]. The set of factors K can be seen as a joint latent space on which a mapping

2



Search for User-related Features in MF-based Recommender Systems 3

of both users and items spaces is performed [4]. Thus matrices U and V can be
considered as transfer matrices to the new feature space from the spaces of users
and items respectively. MF techniques have recently attracted more attention
than traditional neighborhood-based approaches [1], as they are adequate for
large-scale and sparse datasets [5] and have proven to result in models of both
low-complexity and good accuracy (see Netflix Prize competition [4, 6]).

Features resulting from factorization usually do not have any physical sense,
what makes resulting recommendations less explainable. Some authors made at-
tempts to interpret them by using non-negative matrix factorization based on
multiplicative update rules (further referred to as NMF). NMF imposes the con-
dition of non-negativity on the values of matrices U and V , to ensure that each
user profile can be represented as an additive linear combination of coordinates
[7]. [8, 7] assumed that the features formed can be related to behavioral pat-
terns, or to groups of users. However, the interpretation of each feature is not so
easy to perform as it has to be discovered manually, by analyzing the content of
the matrices. Authors of [9] focused on the explanation of the recommendations
with MF techniques. With this aim, MF and neighborhood-based approaches
are combined through weighting schemes. Nevertheless, such a method allows
only partial explanation of the recommendations.

So we can conclude that relatively few works concern feature interpretation
in MF-based recommendation techniques and the proposed approaches either re-
quire human post-processing or provide only partial interpretation. Still such an
interpretation could be useful not only for understanding and characterizing the
relation between users and items but also to make recommendations explainable.

3 The proposed approach: RU-NMF

3.1 Preliminaries

Let us consider 2 linear spaces L1 and L2 of dimensionality respectively 6 and
3, with basic vectors in canonical form {um}, m ∈ 1, 6 and {fk}, k ∈ 1, 3 . Let
the transfer matrix from L1 to L2 be specified by matrix (1).

P =




0 0 p13 p14 1 p16
1 0 p23 p24 0 p26
0 1 p33 p34 0 p36


 (1)

u5, u1 and u2 are direct preimages of f1, f2 and f3 respectively. Indeed,

Pu5 = P
(

0 0 0 0 1 0
)T

=
(

1 0 0
)T

= f1. By analogy, Pu1 = f2, Pu2 = f3. At
the same time vectors u3, u4 and u6 will be mapped into linear combinations of
basic vectors f1, f2 and f3. For example, Pu3 = p13f1+p23f2+p33f3 presents
the linear combination for u3.

3.2 RU-NMF

As mentioned previously, matrix U can be considered as a transfer matrix from
the space of users to the space of features. Analyzing the example considered
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4 Marharyta Aleksandrova, Armelle Brun, Anne Boyer, Oleg Chertov

above, we can say that if matrix U has a form similar to (1), i.e. U has exactly K
unitary columns with one non-zero and equal to 1 element on different positions,
then the users corresponding to these columns are direct preimages of the K
features. We say they represent the canonical coding of the features, following
[10]. The features can thus be directly interpreted as users. These users will be
referred to as representative users.

Obviously, in the general case, one cannot guarantee that the matrix U will
be in a form similar to matrix (1). Worse, none of the column-vectors of matrix
U may directly represent the canonical form of a feature. However we could
design a matrix factorization approach that imposes appropriate constraints.
In our case, the constraints would be the following: K columns in U have to
represent the canonical coding of K different features. In order to solve this
problem we propose the RU-NMF approach, that forms both matrices U and V ,
with features corresponding to representative users. The whole process consists
of 6 steps, further detailed below.

Step 1. A traditional matrix factorization is performed, resulting in both
matrices U and V with K features. As in [8, 7], that were also focusing on the
interpretation of features, we used non-negative matrix factorization based on
multiplicative update rules.

Step 2. A normalization of each of the M column vectors of the matrix U is
performed so as to result in unitary columns. The resulting normalized matrix
is denoted by Unorm and the set of normalization coefficients by C.

Step 3. This step is dedicated to the identification of the representative users
in the Unorm matrix. We will consider user um as the best preimage candidate
for the feature fk if the vector in matrix Unorm corresponding to the user um
will be the closest to the corresponding canonical vector (a vector with the
only one non-zero and equal to 1 value on position k). The notion of closeness
between vectors is expressed in Euclidean distance. That is the task of finding
representative user um is reduced to solving the optimization problem (2).

dist(fk, u
norm
m )→ min (2)

where unormm is the vector from matrix Unorm corresponding to the user um.
Let us consider the following example. Assume that we have vector α of the

form
(
α1 α2 . . . αK

)T
with unique norm (

√
α2
1 + α2

2 + . . .+ α2
K = 1). Then the

distance between α and the first canonic vector f1 =
(

1 0 . . . 0
)T

is expressed
by dist2(f1, α) = (1 − α1)2 + α2

2 + . . . + α2
K . Performing simple mathematical

transformations we can obtain equation (3).

dist2(f1, α) = 2(1− α1) (3)

This means that the minimum of the distance is obtained under the condition
α1 → max. Taking into account this reasoning, we consider a user um as a
preimage candidate for the feature fk if the maximum value of appropriate vector
unormm is situated on the position k; and the best preimage candidate is the one
among all candidates with the highest maximum.

4



Search for User-related Features in MF-based Recommender Systems 5

Let us analyze what can be the highest value of distance (2) between a
canonic vector fk and a preimage candidate vector unormm . We have already
noted that maximum value of the candidate vector unormm is situated on the po-
sition k, otherwise um will be considered as a preimage candidate for another
feature. Considering the formula (3) we can say that the maximum of distance
is reached when the maximum value of the vector unormm is as small, as possible.
Obviously this condition holds only for the vector unormm with all equal values(

1√
K

1√
K
. . . 1√

K

)T
, where K is the dimensionality of unormm . In this case dis-

tance will be equal to distmax =
√

2(1− 1√
K

).

As we can see maximal value of distance depends on the dimensionality
of the feature space. So, in order to unify characteristics of representative users
considering different number of features and for simplicity of analysis, we propose
to use the quality score (4) for the identification of representative users and their
characterization.

q(um) = 1− dist(fk, um)

distmax(K)
(4)

The highest quality score, namely 1, is assigned to a candidate with a vector
equal to the canonical coding as the appropriate distance is equal to 0. The
lowest quality score, namely 0, is assigned to candidates with no influencing
coordinates (all values are equal).

Thus on the third step all users are divided into subgroups of preimage can-
didates for each feature (according to the position of maximal value in unormm ).
After this, the user with the highest quality score among all candidates is con-
sidered as the representative one for the current feature.

Once all preimages are identified, the matrix Unorm is modified so as to obtain
a matrix in a form of (1): in each column that corresponds to a representative
user, a 1 is assigned to the coordinate at the position of the maximum value and
a 0 is assigned to all others. The resulting modified matrix is the matrix Umod

norm.
In some cases, a feature, say feature fk, may have no candidate preimage. In

this case we can either decrease the number of features considered for factoriza-
tion or search for a vector with the second maximum situated on that specific
position.

Step 4. Each column of the matrix Umod
norm is multiplied to the appropriate

normalization factor from the set C resulting in matrix Umod. After this, repre-
sentative users will remain preimages of the features but with scaling coefficients.

Step 5. In order to obtain the best model we also have to modify the matrix
V under the condition of minimal loss. The modification of V can be performed
using optimization methods with the starting value obtained during the first
step. As the objective of this paper is to determine the relevance of finding
preimages of the features and to quantify the decrease of the quality of the
recommendations, we did not consider this step.

Step 6. The resulting recommendation model is made up of matrices Umod

and V according to the formula R∗ =
(
Umod

)T
V .

5
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4 Experimental results

4.1 Datasets and Evaluation

In order to evaluate RU-NMF, we perform experiments on the 100k MovieLens
dataset1, which contains 100k ratings, ranging from 1 to 5, assigned by 943
users to 1682 movies (items). In all experiments, 80% of the ratings are used
for learning the model and 20% for testing it. We prepare 30 different pairs
of learning and test sets with the first one randomly chosen from the original
100k MovieLens dataset and the second one made up of the remaining part. The
accuracy of the models are evaluated with two classical measures: mean absolute
error (MAE) and root mean square error (RMSE) [11].

4.2 Quality of the Representative Users

In this section we answer the question (a), namely if MF algorithms can result
in features that can be associated with real users. For each of the 30 datasets,
we perform NMF with 10, 15 and 20 features. After that, for each run we order
the representative users by their quality score and compute the mean quality
at each rank (considering the number of features used for factorization). The
corresponding values are presented in figure 1. When the number of features is
equal to 10, the quality score of the representative users is particularly high:
90% of them have a quality score higher than 0.8 and 60% have a score higher
than 0.9. With 15 and 20 features the quality of representative users decreases.
For example, when the number of features is equal to 15, only half of the vectors
corresponding to representative users have a quality score above 0.8 and only
20% above 0.9. With 20 features only 30% of the representative users have a
quality above 0.8 and 10% above 0.9. As a result we can say that when the
number of features is equal to 10 NMF naturally results in features, which are
very close to the searched canonic form, that means in features that can be
interpreted as real users.

4.3 Traditional NMF versus RU-NMF

In this subsection we seek an answer to the question (b) will RU-NMF have a
considerable impact on the accuracy of the recommendations. The left part of the
table 1 presents the resulting mean and standard deviation values of both errors
(MAE and RMSE) on the 30 datasets for NMF with 10, 15 and 20 features.
The mean error value, for both MAE and RMSE, goes down on the learning set
when the number of features grows up. In contrast, on the test set the errors
increase with the number of features. This fact confirms the overfitting problem
mentioned in many works [12] and partially supports the conclusion of [9] that
the more adequate number of features on the MovieLens dataset is close to 10.
We can mention that on the test set, standard deviation seems to decrease as
the number of features increases, confirming the consistent increase in the error.

1 http://grouplens.org/datasets/movielens/
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Fig. 1. Quality score for 10, 15 and 20 features.

Table 1. NMF vs RU-NMF: mean and standard deviation values of errors with 10, 15
and 20 features on learning and test sets.

NMF RU-NMF

Learning set Test set Learning set Test set

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

10 features 10 features

mean 0.5482 0.7154 0.8014 1.0507 mean 0.5491 0.7168 0.8018 1.0512
std 0.0019 0.0019 0.0067 0.0096 std 0.0021 0.0022 0.0067 0.0096

15 features 15 features

mean 0.4933 0.6529 0.8393 1.1035 mean 0.4982 0.6613 0.8417 1.1071
std 0.0017 0.0020 0.0046 0.0068 std 0.0025 0.0039 0.0047 0.0071

20 features 20 features

mean 0.4461 0.5988 0.8689 1.1412 mean 0.4585 0.6232 0.8749 1.1505
std 0.0011 0.0012 0.0057 0.0063 std 0.0029 0.0062 0.0060 0.0069

The right part of the table 1 presents the mean and standard deviation values
of the two error measures, computed on the same datasets and the same number
of features for RU-NMF. We can see similar dependences as for the traditional
NMF: both errors decrease on the learning set while the number of features
grows, and both errors increase on the test set. As on NMF, standard deviations
seem to decrease on the test set. We can conclude that RU-NMF preserves almost
the same characteristics as traditional NMF.

Next we compare the accuracies of RU-NMF and NMF. The accuracy loss
ρ, defined by formula (5), computes the relative difference between the error
obtained with RU-NMF (err (RU-NMF)) and the error obtained with traditional
NMF (err (NMF)). A positive loss value means that NMF performs better than
RU-NMF. Table 2 reports the accuracy loss ρ, computed on the same 30 datasets.

ρ =
err (RU-NMF)− err (NMF)

err (NMF)
100% (5)

7
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Table 2. Accuracy loss ρ between RU-NMF and the traditional NMF, for 10, 15 and
20 features, %.

10 features 15 features 20 features

mean std min max mean std min max mean std min max

Learning set
MAE 0.17 0.09 0.03 0.38 0.98 0.34 0.49 1.71 2.78 0.67 1.38 4.27
RMSE 0.19 0.10 0.03 0.46 1.29 0.49 0.61 2.38 4.08 1.08 1.94 6.64

Test set
MAE 0.05 0.06 -0.06 0.18 0.29 0.19 -0.06 0.77 0.70 0.27 0.13 1.43
RMSE 0.05 0.07 -0.07 0.20 0.33 0.20 -0.04 0.79 0.82 0.31 0.12 1.53

The first conclusion that we can make when analyzing table 2 is that the
accuracy loss increases with the number of features, on both learning and test
sets, and for both error measures. In the worst case, the accuracy loss equals to
6.64%, for RMSE with 20 features, which is quite small. The lowest accuracy
loss (0.05%) is obtained with 10 features for both errors. Standard deviation
holds the same dependence: on test and learning sets, the accuracy loss is the
least dispersive with 10 features. When comparing the accuracy loss between
test and learning sets, we can note that the average loss is 3 times lower on test
than on learning, for both errors and for all the number of features: thus we can
say that RU-NMF has a lower relative loss between learn and test compared to
NMF. A thorough analysis of the losses obtained on the 30 sets has shown that
the accuracy loss on the test set is lower than the one on the learning set, in all
cases, whatever is the error and the number of features. In some runs, RU-NMF
has even a higher accuracy than NMF (see values in bold in table 2). This holds
for 23% and 3% of the runs with 10 and 15 features respectively.

In order to estimate if the loss in accuracy between RU-NMF and NMF is
statistically significant, we perform a statistical test. The null hypothesis H0

denotes “The loss in error between NMF and RU-NMF is null”. Student’s tests
with 99% confidence (α = 0.01) have been performed and the results are pre-
sented in Table 3. In this table “H0” represents the acceptance of the hypothesis
and “-” its rejection. Considering 10 features on both learning and test sets and
15 features on the test set, both MAE and RMSE are not increased by RU-NMF
(for example, the p-values with 10 features on MAE is equal to 0.8072). The null
hypothesis is thus accepted for these numbers of features. In other cases, the
errors on RU-NMF and traditional NMF models can not be considered as equal.

Considering this, we can conclude that a number of features equal to 10
provides not only the smallest values of errors on the test set, but also results in
the representative users of the highest quality. Thus the quality of representative
users can be considered as one of the potential indicators of the optimal number
of features (the number of features, that results in the smallest error on the test
set and that, thus, must be used in the factorization process). Also it may mean
that an inverse logical conclusion takes place, notably representative users will
be of a high quality only if the number of features is close to the optimal one.

8
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Table 3. Results of Student’s test with hypothesis H0: “The loss in error between
NMF and RU-NMF is null” for α = 0.01.

Learning set Test set

MAE RMSE MAE RMSE

10 features H0 H0 H0 H0

15 features - - H0 H0

20 features - - - -

5 Discussions and future work

This paper proposes a simple modification of the traditional matrix factorization
approach (RU-NMF), that aims at forming not only interpretable features, but
also features that represent elements from the reality (users). This work is a
preliminary one and its main goal is to show that such features can be formed.

We have shown that the features resulting from a traditional approach (NMF)
when the number of features is close to the optimal are naturally close to the
canonic form. Thus the model can be slightly modified so as to correspond to
real users, resulting in a small loss in the accuracy. When the number of features
is equal to 10 and 15, this loss is even not statistically significant on the test set.
Also it was shown that RU-NMF mainly preserves the same characteristics as
traditional NMF. Thus the both questions raised in this paper were answered.
The analysis of the accuracy loss has shown that the features formed by RU-
NMF consistently disturb the accuracy on the test set less than on the learning
set. This can be considered as a potential ability of factorization techniques with
features related to reality to limit overfitting problem faced by many others.

From our point of view, the proposed interpretation has several important
positive impacts on the way the model can be exploited. First, if such an inter-
pretation can be made, the recommendations can be easily explained. Indeed, if
each feature corresponds to a representative user, then the matrix V expresses
preferences of representative users on items. Meanwhile, each line in the matrix
U reveals interactions between the user, corresponding to this line, and a set
of representative users. Thus each user of the population is linearly mapped on
the basis related to representative users and the preferences of the latter ones
are used to estimate the ratings of the whole population. That makes the rec-
ommendation process ideologically close to the neighborhood-based approaches
with representative users used instead of neighbors. Second, as the estimated
ratings of all users of the population are computed through the representative
users, the latter can be viewed as mentor users in the population: the users who
represent the preferences of entire population. They can also be viewed as the
users to choose in poll studies. They can thus also be considered as those to be
tracked, so as to follow the evolution of the preferences of the population. Finally,
the approach we propose for this interpretation is automatic, it does not require
any human expertise, unlike of other works focused on features interpretation.
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In a future work, we would like to focus first of all on the verification of
the hypothesis that users associated with the features can be really considered
as representative ones. We consider that it can be done while solving the new
item cold-start problem. Indeed, knowing preferences of identified users on a
new item and their relations with all other users of the population (what is
represented by matrix U) we can try to predict ratings of other users on this
item. Accuracy of the resulting predictions will indicate if feature-related users
can actually represent the whole population. At the opposite of many state of the
art approaches that aim at tackling the cold-start problem, this one also requires
no information about the content of the items. Second revealed properties of RU-
NMF should be verified on other datasets. We would also like to investigate if
other factorization techniques (such as those, based on gradient descent and
alternating least squires) will result in features, that can be interpreted as real
users.
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Abstract. In this paper, we propose to reformulate the active learn-
ing problem occurring in classification as a sequential decision making
problem. We particularly focus on the problem of dynamically allocat-
ing a fixed budget of samples. This raises the problem of the trade off
between exploration and exploitation which is traditionally addressed
in the framework of the multi-armed bandits theory. Based on previ-
ous work on bandit theory applied to active learning for regression, we
introduce two novel algorithms for solving the online allocation of the
budget in a classification problem. Experiments on a generic classifica-
tion problem demonstrate that these new algorithms compare positively
to state-of-the-art methods.

1 Introduction

We place ourselves in the supervised learning framework, especially in a noisy
2-class classification problem. Our work focuses on active learning, which is the
process consisting in driving the choice of the examples that need to be labelled
in order to minimize the number of queries to the oracle. To do so in an on-
line context the algorithm successively chose the best example to present to
the oracle taking into account the information provided from all the previous
samples, thus, it can be seen as a sequential decision process. The noisy aspect
of this problem —which may come from an intrinsic noise on the data or from an
inability of the classifier to distinguish examples— and the fact that the noise
is not the same for all examples, implies that some examples can be more or
less difficult to classify. Indeed, it is relatively intuitive that little effort must be
put into the least noisy examples as they are easy to classify. While it is less
intuitive that little effort must also be put into very noisy examples too. Thus,
this is an online allocation problem with respect to the noise value, and can be
represented by a multi-armed bandit setting, introduced in [14] and surveyed in
[3]. A major issue of this problem is that we do not know in advance the noise
of an example, but it can be learnt while we present examples to the oracle.
We therefore have to make a trade-off between learning the noise of examples
and presenting examples according to the noise. Leading to the approach of
Optimism in the face of uncertainty and algorithms based on Upper Confidence
Bounds introduced in [1], with the advantage of working under a finite budget.
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In the past few years, the field of active learning of noisy (or not) binary
classification algorithms has been largely studied, and is surveyed in [12]. In [8],
the authors introduced the Uncertainty Sampling Algorithm. It uses probabilistic
classifiers, which output a probability of the example having a particular label.
The idea is to sample examples for which the classifier is least certain of class
membership, i.e. the probability is the closest to 0.5. In [7], the authors add to
this the quality of estimation of this output. The more the output is close to 0.5,
and the less the quality of the estimation is, the highest the probability of giving
the wrong label, and so, the more the algorithm tends to sample the example.
Other authors make use of a set of classifiers. In [6], [13] and [10], the authors
use a version space being the set of classifiers consistent with all labels revealed
so far, and a region of uncertainty being the region where there exist a pair of
hypotheses that disagrees, at each time step, a sample is taken in the region of
uncertainty and all the classifiers inconsistent with the sample are eliminated
from the version space. Some work adapt this to noisy classification. In [2], a
confidence interval on the performance of the classifiers is established and the
classifiers eliminated are those for which it is not possible that they perform
best. In [11] and [9], a probability of being the best is affected to each classifier,
a sample is taken where the classifiers disagree most, and a Bayesian update is
applied to this probability with each sample.

In [5] and [4], the authors study the problem of estimating uniformly well the
mean values of several distributions which is equivalent to the problem of regres-
sion by a piece-wise constant function and thus, can be seen as a classification
problem with an infinite number of classes. This is done under the constraint
of using a finite number of samples, referring thereby to active learning. To
this end, they model the problem under a multi-armed bandit setting, in which
pulling an arm correspond to taking a sample in one of the distributions. The
goal is to define an allocation strategy which aims to minimize a loss function.
In [5] the loss is the maximum one-arm loss defined by the distance between
the mean values and their estimate. Whereas in [4], the loss is the weighted
sum of this one-arm loss. To minimize those losses samples need to be allocated
in proportion to the variance or the standard deviation depending on the loss.
The variance/standard deviation being unknown it has to be estimated at the
same time as the allocation of the samples, resulting in a dilemma between using
samples to learn the variance or to estimate the mean values. The authors use
Optimism in the face of uncertainty which is a common approach to solve this
dilemma by computing high probability bounds on the value to estimate and
sampling the arm with the highest bound.

This paper shows how to use the multi-armed bandit setting for active learn-
ing in classification by adapting the algorithms designed in [5] and [4] to the
specific case of binary classification. To do so, the two kinds of loss have been
redefined using a new one-arm loss, which represents the expected regret of the
true risk. Indeed, the optimal risk of a noisy distribution is non zero, thus ef-
forts could be spent for nothing when trying to decrease a risk that cannot be
decreased. Therefore, the loss function is the expected difference between the
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risk and the optimal risk. Having redefined them, we had too deal with the fact
that they aren’t inversely proportional to the number of samples any more. An
other advantage of classification is that the shape of the distribution of samples
is known. Indeed, the samples belong only to {0, 1}, the distribution is thus
Bernoulli. This allows us to derive extremely tight bounds. In the adaptive allo-
cation setting, the parameters of the distributions cannot be accessed, we use the
approach of Optimism in the face of uncertainty. Allocation strategies have to
be defined in the full knowledge setting, in which the parameters of distributions
are known in advance, and afterwards build algorithms that sample according
to this strategy plus some uncertainty.

In Section II, we define several loss and pseudo-loss functions which have to
be minimized. Then, we place ourselves in the full knowledge setting and find
the optimal allocation strategies which minimizes those losses. In Section III,
we place ourselves in the adaptive allocation setting, and define high probability
bounds on the losses. We then present our algorithms which sample arms accord-
ing to these bounds. In Section IV, we describe a toy problem and show that it
is representative of more general problems. Then, we evaluate our algorithms on
this toy problem and show that our algorithms perform better than algorithms
initially designed for regression. In Section V, we show a conclusion.

2 Allocation strategy in full knowledge

After formalizing our problem under a K-armed bandit setting, we define several
kinds of losses to be minimized. We then give the optimal allocation strategy in
full knowledge as well as an online criteria to sample according to this strategy.

LetX be an instance space and Y = {0, 1} be the set of possible labels. Let an
oracle label x ∈ X with y ∈ Y . Let N = {X1, ..., XK |∪Kk=1Xk = X,∩Kk=1Xk = ∅}
be a fixed clustering of X, and H = {f : X → Y, f(x) =

∑K
i=1 1{x∈Xk}yk, yk ∈

Y,Xk ∈ N} be the hypotheses space defined by piecewise constant functions.
The goal is to learn the hypothesis which predictions are as close as possible to
the oracle’s, with as few queries as possible to it.

This problem can be formalized under a K-armed bandit setting where each
cluster is an arm k = 1,...,K characterized by a Bernoulli distribution νk with
mean value µk. Indeed, samples taken in a given cluster can only have a value
of 0 or 1. At each round, or time step, t ≥ 1, an allocation strategy selects
an arm kt, which corresponds to picking an example randomly in a cluster and
presenting it to the oracle, and receives a sample yk,t ∼ νk, independently of
the past samples. Let {wk}k=1,...,K denote the relative importance of a cluster,
summing to 1, coming from the knowledge of how much a cluster will be solicited
while using the classifier (not learning it). Most of the time, we will take the
distribution of unlabelled data among clusters for {wk}k=1,...,K . The goal is to
define a strategy that finds the best labels to assign to clusters using a budget
of n samples.
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Let us write Tk,t =
∑t
s=1 1{ks = k} the number of times arm k has been

pulled up to time t, this way (Tk,t)k∈{1,...,K} denotes the allocation strategy. Let
µ̂k,t =

1
Tk,t

∑Tk,s

s=1 yk,s be the empirical estimate of the mean µk at time t.
We now introduce two kinds of losses, as in [5] and [4], each of them is based

on a one-arm loss: the maximum one-arm loss among clusters and the sum of
the one-arm losses. Let us now see how the one-arm loss is built.

Usually, in a classification setting, we judge on the performance of an algo-
rithm by measuring the risk incurred. Here, the risk is based on the binary loss
L0/1(y, f(x)) = 1 if f(x) 6= y and 0 otherwise. Thus, the one-arm true risk is
Rk(y) = 1 − µk if y = 1 and µk if y = 0, and the one-arm empirical risk is
R̂k,n(y) = 1− µ̂k,n if y = 1 and µ̂k,n if y = 0. In order to minimize the empirical
risk, which is the best an algorithm can do knowing only the samples received,
the algorithm always assigns the label [µ̂k,t] to arm k at round t. The risk of
the algorithm must always be compared to the best risk that can be reached,
otherwise efforts could be spent for nothing when trying to decrease a risk that
cannot be decreased. Here, the best risk of arm k can be reached with the label
[µk]. We therefore define the one arm loss for classification which is the expected
regret of the one arm true risk,

Lk,n = E[Rk([µ̂k,n])−Rk([µk])] = 2|µk − 0.5|P([µ̂k,n] 6= [µk]), (1)

where the expectation is taken over all the samples.
The two kinds of losses now become

Lsn((Tk,n)k∈{1,...,K}) =
K∑

k=1

wkLk,n (2)

and Lmn ((Tk,n)k∈{1,...,K}) = max
k

wkLk,n. (3)

The objective would now be to build algorithms that minimize those losses.
However, the method we use to find the best allocation strategy is based on
some conditions on the shape of the loss. In order to get a function to minimize
with a more convenient shape, we prefer to bound those losses by a pseudo-loss.

We therefore use the knowledge that the mean values of each cluster follow
a binomial distribution, allowing us to give a tight bound to the probability
P([µ̂k,t] 6= [µk]) while keeping pseudo-losses for which the one-arm pseudo-loss
is strictly decreasing with Tk,t.

Let I1−µk
(Tk,n − bTk,nµ̂k,nc, bTk,nµ̂k,nc + 1) be the cumulative distribution

function of Tk,nµ̂k,n following the binomial distribution with parameters Tk,n, µk.
Then,

P([µ̂k,n] 6= [µk]) = 1[µk]=0P(µ̂k,n ≥ 0.5) + 1[µk]=1P(µ̂k,n < 0.5) (4)
= 1[µk]=0(1− I1−µk

(Tk,n − bTk,n/2c, bTk,n/2c+ 1)) (5)
+ 1[µk]=1I1−µk

(Tk,n − bTk,n/2c, bTk,n/2c+ 1). (6)

Note that the probability given above is a step function of Tk,n/2 and so is
not a strictly decreasing function of Tk,n. That is not convenient as we require
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this condition in the later. That is why we bound this probability by bounding
the truncated value bTk,n/2c. Then,

P([µ̂k,n] 6= [µk]) ≤ 1[µk]=0(1− I1−µk
(Tk,n/2 + 1, Tk,n/2)) (7)

+ 1[µk]=1I1−µk
(Tk,n/2, Tk,n/2 + 1). (8)

We therefore define the two following pseudo-losses:

L̃s,binn ((Tk,n)k∈{1,...,K}) =
K∑

k=1

lk(Tk,n, µk) (9)

and L̃m,binn ((Tk,n)k∈{1,...,K}) = max
k∈{1,...,K}

lk(Tk,n, µk), (10)

with lk(Tk,n, µk) = 2wk|µk − 0.5|[1[µk]=0(1− I1−µk
(Tk,n/2 + 1, Tk,n/2)) (11)

+1[µk]=1I1−µk
(Tk,n/2, Tk,n/2 + 1)] (12)

the one-arm pseudo-loss.
One quality of this pseudo-loss is that while it has a convenient shape, it

remains very tight. This means that minimizing this pseudo-loss acts almost as
good as minimizing the true losses from equations (2) and (3).

Note that lk as well as ∂lk/∂Tk,n are both strictly decreasing functions of
Tk,n. Thus, they admit inverses l−1k and l

′−1
k respectively.

Let us remind that the objective is to find allocation strategies that minimize
the pseudo-losses. Let T ∗s,bink,n and T ∗m,bink,n be the optimal number of samples to
take in each cluster in order to minimize L̃s,binn and L̃m,binn respectively under
the constraint that

∑K
k=1 T

∗s,bin
k,n = n and

∑K
k=1 T

∗m,bin
k,n = n. Then,

T ∗s,bink,n = l
′−1
k (c∗, µk) and T

∗m,bin
k,n = l−1k (R∗, µk), (13)

with c∗ and R∗ such that
∑K
k=1 l

′−1
k (c∗, µk) = n and

∑K
k=1 l

−1
k (R∗, µk) = n.

In the online allocation setting, at each round t a full knowledge algorithm
would the arm ks,bint or km,bint depending on the pseudo-loss considered. Under
the condition that lk and dlk

dTk,t
are strictly decreasing function of Tk,t, we have

ks,bint ∈ argmax
1≤k≤K

T ∗s,bink,t

Tk,t
= argmax

k
lk(Tk,t, µk) (14)

and km,bint ∈ argmax
1≤k≤K

T ∗m,bink,t

Tk,t
= argmax

k

∂lk
∂Tk,t

(Tk,t, µk). (15)

However, the µk values are unknown, therefore we cannot build an algorithm
that picks T ∗k,n samples in each cluster and attain optimality.

We thus use an optimistic approach to estimate the µk and at the same time
allocate samples as close as possible to the optimum.
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3 Allocation strategy using estimated means

In this section, we introduce two algorithms derived from the full knowledge
criterion of the previous chapter. The full knowledge setting is not a realistic
approach as if the means of the distribution were known in advance, then the
optimal labels could be easily deducted from them. Thus, we now refer to the set-
ting of adaptive allocation, in which we have to deal with learning the parameters
of the distributions and allocate the samples optimally with respect to these pa-
rameters. This problem is usually called the exploration/exploitation dilemma.
In order to solve this problem, we use the Optimism in the face of uncertainty
approach which computes a high probability bound on the value to maximize,
and sample the arm with the highest bound. This way, if the value to estimate is
close to the upper bound, then the sample is well chosen, otherwise, the bound
tighten up, the upper bound decreases, and the arm will not be sampled next
time, the uncertainty has reduced. We therefore use this approach in our prob-
lem to build adaptive algorithms that allocate samples closest to the optimal.

Input: δ
Initialize: Pull each arm twice
for t = 2K +1, ..., n do

Compute Bk,t = wkek with ek such as P(f(Tk,t, µk) > ek|µ̂k,Tk,t
) = δ

for each arm 1 ≤ k ≤ K Pull an arm kt ∈ argmax1≤k≤KBk,t
end
Output: [µ̂k,n] for all arms 1 ≤ k ≤ K

Algorithm 1: Core algorithm
Each algorithm follows the same core, which is described in Algorithm 1,

where the difference lies in the criteria f which should be replaced by lk(Tk,t, µk)
or ∂lk

∂Tk,t
(Tk,t, µk) depending on the pseudo-loss considered. They take one pa-

rameter as input: δ which defines the confidence level of the bound. The amount
of exploration of the algorithms can be adapted by properly tuning δ.

Usually, the high probability bounds are derived from general concentration
inequalities where the shape of the distribution is unknown. Here, we search a
confidence interval on the criterion which are functions of the µk values. More-
over, we know that the estimated means are drawn from a Bernoulli distribution.

Let us state that Beta distributions provide a family of conjugate prior proba-
bility distributions for binomial distributions. The uniform distribution Beta(1,1)
is taken as the prior probability distribution, because we have no information
about the true distribution. Using the Bayesian inference :

P(µk = x|µ̂k,t, Tk,t) =
xTk,tµ̂k,t(1− x)Tk,t(1−µ̂k,t)

Beta(Tk,tµ̂k,t, Tk,t(1− µ̂k,t) + 1)
(16)

Let Ik = {µk|f(Tk,t, µk) > ek}, then

P(f(Tk,t, µk) > ek|µ̂k,t, Tk,t) =
∫

x∈Ik
xTk,tµ̂k,t(1− x)Tk,t(1−µ̂k,t)dx. (17)
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4 Results

In this section, we evaluate empirically the algorithms introduced in the previous
section on a built-in problem. We first demonstrate the performance of those
algorithms in full knowledge, to establish the goal standard (the best we can
expect from those algorithms). Then, we evaluate the algorithms for adaptive
allocation and check if the exploration/exploitation trade-off is well achieved.

Any classification problem which involves a fixed clustering can be modelled
by the following parameters: (i) the number of clusters K, (ii) the mean value of
the labels drawn from each clusters (µk)k∈{1,...,K}, (iii) the relative importance
of each cluster (wk)k∈{1,...,K}.

Indeed, the relative position of a cluster to an other has no influence on
the problem, this is the reason why we could model it under a K-armed bandit
problem. The fact that we only care about the label of samples belonging only
to {0, 1} implies that the distribution is Bernoulli and so each cluster is only
characterized by its mean value of labels.

To evaluate our algorithms we use the following parameters: (i) K = 16,
being large enough to get some diversity on clusters but not too large as it
would be useless, (ii) ∀k, µk = k

16 , this way we represent the largest variety of
values possible, and thus our evaluation concerns all the values, (iii) the relative
importance of each cluster (wk)k∈{1,...,K} = 1

16 thus, our evaluation concerns
equally all the values.

At each time step, each algorithm pick a sample in a cluster according to
its allocation strategy and select the best hypothesis. Then its prediction is
evaluated using the true risk, knowing the true mean values and the weights
vector.

During our evaluations, the algorithms are called as follows:

– Random sampling is the algorithm for which samples are taken uniformly in
each cluster, regardless of the mean value of distributions (baseline),

– CH-AS and MCUCB are algorithms introduced in [5] and [4] respectively.
– m binomial is the algorithm based on the maximum one-arm loss

bounded using the knowledge of the binomial distribution,
– s binomial is the algorithm based on the sum of the one-arm losses

bounded using the knowledge of the binomial distribution,

4.1 Evaluation of the algorithms in full knowledge

First, we evaluate the algorithms in full knowledge. At each time step, the al-
gorithm picks a sample in the arm for which the online allocation criteria from
equations (14) and (15) is maximum. The results of the evaluation are shown in
Figure 1(a). We can see that the methods introduced by [5] and [4] —respectively
MCUCB and CH-AS— do not perform better than random sampling. This is
due to the fact that the algorithms are designed for regression and the evalua-
tion is taken from a classification point of view. Those algorithms will allocate
more samples to clusters with a mean value far to 0.5 than it has to. Indeed,
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the goal of regression is to estimate precisely the mean value, whereas the goal
of classification is to be able to predict a good label, so being able to know if a
mean value is closer to 0.86 or 0.87 is of no interest for classification because in
both cases the predicted label will be 1.
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(a) full knowledge setting
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(b) δ = 0.1
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(c) δ = 0.9
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(d) δ = 0.99999

Fig. 1. True risk of the algorithms in the full knowledge setting (1(a)) or in the adaptive
allocation setting with different values of δ (1(b), 1(c) and 1(d))

4.2 Evaluation of the algorithms under adaptive allocation

Let us now evaluate the results of the algorithms for adaptive allocation. One
notable feature of those algorithms is the ability to control the amount of ex-
ploration versus exploitation through value of the parameter δ. A low value of δ
will result in more exploration and the algorithms will become close to random
sampling. On the other side, a high value of δ will result in more exploitation
and so, the algorithm will be much more confident about the first estimation of
the mean values. The exploration is necessary because, in the pure exploitation
setting, when having received 2 samples from each clusters, all the estimations
are either 0, 1 or 0.5, sampling a 3rd point in a random cluster will change
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the estimation of its mean value to a one with an increased corresponding loss,
keeping it the next cluster to sample. This state will not change and this first
random cluster would drain all the samples.

We first evaluated our algorithms with a low value for δ resulting in high
probability bounds, which was intended. We ran our algorithms with δ = 0.1.
We display the results of this run on Figure 1(b).

A strange phenomenon appears in Figure 1(b), we see sort of steps. We
remind here that we evaluate the algorithms via 1207 trials and display the
average true risk. In fact, these steps are due to the lack of exploitation. Indeed,
exploring implies to sample clusters which will not help to decrease the true risk.
One could wonder why the arrangement in a way that it highlights two phases,
one decreasing phase followed by a constant phase. First let us clear up the
fact that this does not reveal an exploitation phase and an exploration phase,
everything happens at the same time. But, the important exploration makes the
clusters be sampled equally. One step (two phases) correspond to one number of
samples in each cluster, i.e. we sample each cluster once then each cluster once
again and so on. Now, inside a step the exploitation still plays a role, whereas
the clusters are samples equally, the algorithm still starts by the most important
clusters. Anyway, the steps are due to the fact that the exploration prevails on
the exploitation. If we want to improve the algorithm we have to increase the
value of δ.

We now evaluate our algorithms with δ = 0.9. We display the results on
Figure 1(c).

We can see that, apart from the first one, the steps have disappeared. The
remaining step correspond to the sampling of the third sample in each cluster.
This step remains because it is very hard to decide with very few information.
Here, the algorithm has already taken 2 samples, so the possible values of the
estimated means are 0, 1, and 0.5. Even the cluster requiring most samples will
have such a value, thus, the algorithm cannot decide to leave aside one cluster
and take a fourth sample while other clusters only have two. This is why this
step in the risk is unavoidable.

An other thing we can see is that for this value of δ, the algorithm m binomial
have an acceptable performance while s binomial perform poorly. To improve s
binomial, we increase again the value of δ.

We now evaluate our algorithms with δ = 0.99999. We display the results on
Figure 1(d).

We can see that s binomial improved. One could ask if this value of δ is not
exaggerated because its definition tells that it must have a small value, in order to
derive high probability bounds. But, here, we see that the algorithms behave well
with this value of δ. The only effect of a high value would be that the algorithm
exploit to much, and the performance would be affected. Moreover, we can see
that this value of δ is not well suited for CH-AS, which see its performance
affected.

Finally, we can see that the algorithms built in this paper behave better than
those designed for regression in [5] and [4].
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5 Conclusion

The paper propose a method to use the Optimism in the face of uncertainty
approach in an active learning problem for classification. It introduces two algo-
rithms which perform comparatively well and open a new avenue of research. The
framework established in this paper is related to the problems encountered in
text classification and resembles the problem of parameters estimation in multi-
binomial distributions. Working with a fixed clustering generates new questions
that state-of-the art on active learning do not have. In Uncertainty Sampling the
intent is to sample close to the boundary (µ̂(x) close to 0.5) because this will
redefine it, whereas in our work the clustering remains the same. This leads to
finding new loss functions. Our future work concern will be about an adaptive
clustering of the space as well as the combination of the information providing
from several different clustering .
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Abstract. The paper brie�y introduces multiple classi�er systems and
describes a new algorithm, which improves classi�cation accuracy by
means of recommendation of a proper algorithm to an object classi�ca-
tion. This recommendation is done assuming that a classi�er is likely to
predict the label of the object correctly if it has correctly classi�ed its
neighbors. The process of assigning a classi�er to each object is based on
Formal Concept Analysis. We explain the idea of the algorithm with a
toy example and describe our �rst experiments with real-world datasets.

1 Introduction

The topic of Multiple Classi�er Systems (MCSs) is well studied in machine
learning community [1]. Such algorithms appear with di�erent names � mixture
of experts, committee machines, classi�er ensembles, classi�er fusion and others.

The underlying idea of all these systems is to train several (base) classi�ers
on a training set and to combine their predictions in order to classify objects
from a test set [1]. This idea probably dates back to as early as the 18th cen-
tury. The Condorcet's jury theorem, that was formulated in 1785 in [2], claims
that if a population makes a group decision and each voter most likely votes
correctly, then adding more voters increases the probability that the majority
decision is correct. The probability that the majority votes correctly tends to 1
as the number of voters increases. Similarly, if we have multiple weak classi�ers
(meaning that classi�er's error on its training data is less than 50% but greater
than 0%), we can combine their predictions and boost the classi�cation accuracy
as compared to those of each single base classi�er.

Among the most popular MCSs are bagging [3], boosting [7], random forests
[9], and stacked generalization (or stacking) [10].

In this paper, we present one more algorithm of such type � Recommender-
based Multiple Classi�er System (RMCS). Here the underlying proposition is
that a classi�er is likely to predict the label of the object from a test set correctly
if it has correctly classi�ed its neighbors from a training set.

The paper is organized as follows. In chapter 2, we discuss bagging, boosting
and stacking. In Section 3, we introduce basic de�nitions of Formal Concept
Analysis (FCA). Section 4 provides an example of execution of the proposed
RMCS algorithm on a toy synthetic dataset. Then, Section 5 describes the RMCS
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algorithm itself. Further, the results of the experiments with real data are pre-
sented. Section 7 concludes the paper.

2 Multiple Classi�er Systems

In this chapter, we consider several well-known multiple classier systems.

2.1 Bagging

The bootstrap sampling technique has been used in statistics for many years.
Bootstrap aggregating, or bagging, is one of the applications of bootstrap sam-
pling in machine learning. As su�ciently large data sets are often expensive or
impossible to obtain, with bootstrap sampling, multiple random samples are cre-
ated from the source data by sampling with replacement. Samples may overlap
or contain duplicate items, yet the combined results are usually more accurate
than a single sampling of the entire source data achieves.

In machine learning the bootstrap samples are often used to train classi�ers.
Each of these classi�ers can classify new instances making a prediction; then
predictions are combined to obtain a �nal classi�cation.

The aggregation step of bagging is only helpful if the classi�ers are di�erent.
This only happens if small changes in the training data can result in large changes
in the resulting classi�er � that is, if the learning method is unstable [3].

2.2 Boosting

The idea of boosting is to iteratively train classi�ers with a weak learner (the
one with error better than 50% but worse than 0%) [4]. After each classi�er is
trained, its accuracy is measured, and misclassi�ed instances are emphasized.
Then the algorithm trains a new classi�er on the modi�ed dataset. At classi-
�cation time, the boosting classi�er combines the results from the individual
classi�ers it trained.

Boosting was originally proposed by Schapire and Freund [5,6]. In their Adap-
tive Boosting, or AdaBoost, algorithm, each of the training instances starts with
a weight that tells the base classi�er its relative importance [7]. At the initial step
the weights of n instances are evenly distributed as 1

n The individual classi�er
training algorithm should take into account these weights, resulting in di�er-
ent classi�ers after each round of reweighting and reclassi�cation. Each classi�er
also receives a weight based on its accuracy; its output at classi�cation time is
multiplied by this weight.

Freund and Schapire proved that, if the base classi�er used by AdaBoost
has an error rate of just slightly less than 50%, the training error of the meta-
classi�er will approach zero exponentially fast [7]. For a two-class problem the
base classi�er only needs to be slightly better than chance to achieve this error
rate. For problems with more than two classes less than 50% error is harder to
achieve. Boosting appears to be vulnerable to over�tting. However, in tests it
rarely over�ts excessively [8].
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2.3 Stacked generalization

In stacked generalization, or stacking, each individual classi�er is called a
level-0 model. Each may vote, or may have its output sent to a level-1 model

� another classi�er that tries to learn which level-0 models are most reliable.
Level-1 models are usually more accurate than simple voting, provided they are
given the class probability distributions from the level-0 models and not just the
single predicted class [10].

3 Introduction to Formal Concept Analysis

3.1 Main de�nitions

A formal context in FCA is a triple K = (G,M, I), where G is a set of
objects, M is a set of attributes, and the binary relation I ⊆ G × M shows
which object possesses which attribute. gIm denotes that object g has attribute
m. For subsets of objects and attributes A ⊆ G and B ⊆ M Galois operators

are de�ned as follows:

A′ = {m ∈M | gIm ∀g ∈ A},
B′ = {g ∈ G | gIm ∀m ∈ B}.

A pair (A,B) such that A ⊆ G,B ⊆M,A′ = B and B′ = A, is called a formal

concept of a context K. The sets A and B are closed and called the extent and
the intent of a formal concept (A,B) respectively. For the set of objects A the
set of their common attributes A′ describes the similarity of objects of the set
A and the closed set A′′ is a cluster of similar objects (with the set of common
attributes A′) [11].

The number of formal concepts of a context K = (G,M, I) can be quite large
(2min{|G|,|M |} in the worst case), and the problem of computing this number
is #P-complete [12]. There exist some ways to reduce the number of formal
concepts, for instance, choosing concepts by stability, index or extent size [13].

For a context (G,M, I), a concept X = (A,B) is less general than or equal

to a concept Y = (C,D) (or X ≤ Y ) if A ⊆ C or, equivalently, D ⊆ B.
For two concepts X and Y such that X ≤ Y and there is no concept Z with
Z 6= X,Z 6= Y,X ≤ Z ≤ Y , the concept X is called a lower neighbor of Y , and Y
is called an upper neighbor of X. This relationship is denoted by X ≺ Y . Formal
concepts, ordered by this relationship, form a complete concept lattice which
might be represented by a Hasse diagram [14]. Several algorithms for building
formal concepts (including Close by One) and constructing concept lattices are
studied also in [14].

One can address to [11] and [15] to �nd some examples of formal contexts,
concepts and lattices with their applications. Chapter 4 also shows the usage of
FCA apparatus in a concrete task.

However, in some applications there is no need to �nd all formal concepts of a
formal context or to build the whole concept lattice. Concept lattices, restricted
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to include only concepts with frequent intents, are called iceberg lattices. They
were shown to serve as a condensed representation of association rules and fre-
quent itemsets in data mining [15].

Here we modi�ed the Close by One algorithm slightly in order to obtain
only the upper-most concept of a formal context and its lower neighbors. The
description of the algorithm and details of its modi�cation is beyond the scope
of this paper.

4 A toy example

Let us demonstrate the way RMCS works with a toy synthetic dataset shown
in Table 1. We consider a binary classi�cation problem with 8 objects comprising
a training set and 2 objects in a test set. Each object has 4 binary attributes
and a target attribute (class). Suppose we train 4 classi�ers on this data and try
to predict labels for objects 9 and 10.

Using FCA terms, we denote by G = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} � the whole
set of objects, Gtest = {9, 10} � the test set, Gtrain = G\Gtest � the training
set, M = {m1,m2,m3,m4}� the attribute set, C = {cl1, cl2, cl3, cl4}� the set
of classi�ers.

Table 1. A sample data set of 10 objects
with 4 attributes and 1 binary target
class

G/M m1 m2 m3 m4 Label

1 × × × 1

2 × × 1

3 × × 0

4 × × × 1

5 × × × 1

6 × × × 0

7 × × × 1

8 × × 0

9 × × × × ?

10 × × ?

Table 2. A classi�cation context

G/C cl1 cl2 cl3 cl4
1 × × ×
2 × ×
3 × ×
4 × ×
5 × ×
6 × × ×
7 × ×
8 × × ×

Here we run leave-one-out cross-validation on this training set for 4 classi�ers.
Further, we �ll in Table 2, where a cross for object i and classi�er clj means that
clj correctly classi�es object i in the process of cross-validation. To clarify, a
cross for object 3 and classi�er cl4 means that after being trained on the whole
training set but object 3 (i.e. on objects {1, 2, 4, 5, 6, 7, 8}), classi�er cl4 correctly
predicted the label of object 3.

Let us consider Table 2 as a formal context with objects G and attributes
C (so now classi�ers play the role of attributes). We refer to it as classi�cation
context. The concept lattice for this context is presented in Fig. 1.
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Fig. 1. The concept lattice of the classi�cation context

As it was mentioned, the number of formal concepts of a context K =
(G,M, I) can be exponential in the worst case. But for the toy example it is
possible to draw the whole lattice diagram. Thankfully, we do not need to build
the whole lattice in RMCS algorithm � we only keep track of its top concepts.

Here are these top concepts: (G, ∅), ({1, 3, 5, 6}, {cl1}), ({2, 4, 5, 6, 7, 8}, {cl2}),
({1, 2, 4, 8}, {cl3}), ({1, 3, 6, 7, 8}, {cl4}).

To classify objects from Gtest, we �rst �nd their k nearest neighbors from
Gtrain according to some distance metric. In this case, we use k = 3 and Ham-
ming distance. In these conditions, we �nd that three nearest neighbors of object
9 are 4, 5 and 7, while those of object 10 are 1, 6 and 8.

Then, we take these sets of nearest neighbors Neighb9 = {4, 5, 7} and
Nieghb10 = {1, 6, 8}, and �nd maximal intersections of these sets with the ex-
tents of formal concepts presented above (ignoring the concept (G, ∅)). The in-
tents (i.e. classi�ers) of the corresponding concepts are given as recommendations
for the objects from Gtest. The procedure is summarized in Table 3.

Finally, the RMCS algorithm predicts the same labels for objects 9 and 10
as classi�ers cl2 and cl4 do correspondingly.

Lastly, let us make the following remarks:
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Table 3. Recommending classi�ers for objects from Gtest

Gtest 1st

nearest
neighbor

2nd

nearest
neighbor

3rd

nearest
neighbor

Neighbors Classi�cation concept
which extent gives the
maximal intersection
with the Neighbors
set

Recommended
classi�er

9 4 5 7 {4, 5, 7} ({2, 4, 5, 6, 7, 8}, {cl2}) cl2
10 1 6 8 {1, 6, 8} ({1, 3, 6, 7, 8}, {cl4}) cl4

1. We would not have ignored the upper-most concept with extentG if it did not
have an empty intent. That is, if we had the top concept of the classi�cation
context in a form (G, {clj}) it would mean that clj correctly classi�ed all
objects from the training set and we would therefore recommend it to the
objects from the test set.

2. One more situation might occur that two or more classi�ers turn out to be
equally good at classifying objects from Gtrain. That would mean that the
corresponding columns in classi�cation table are identical and, therefore, the
intent of some classi�cation concept is comprised of more than one classi�er.
In such case, we do not have any argument for preferring one classi�er to
another and, hence, the �nal label would be de�ned as a result of voting
procedure among the predicted labels of these classi�ers.

3. Here we considered an input dataset with binary attributes and a binary
target class. However, the idea of the RMCS algorithm is still applicable for
datasets with numeric attributes and multi-class classi�cation problems.

5 Recommender-based Multiple Classi�er System

In this section, we discuss the Recommender-based Multiple Classi�er System
(RMCS). The pseudocode of the RMCS algorithm is presented in the listing
Algorithm 1.

The inputs for the algorithm are the following:

1. {Xtrain, ytrain} � is a training set, Xtest � is a test set;
2. C = {cl1, cl2, ..., clK} � is a set of K base classi�ers. The algorithm is in-

tended to perform a classi�cation accuracy exceeding those of base classi�ers;
3. dist(x1, x2) � is a distance function for objects which is de�ned in the

attribute space. This might be the Minkowski (including Hamming and Eu-
clidean) distance, the distance weighted by attribute importance and others.

4. k, n_fold � are parameters. Their meaning is explained below;
5. topCbO(context) � is a function for building the upper-most concept of a

formal context and its lower neighbors. Actually, it is not an input for the
algorithm but RMCS uses it.

The algorithm includes the following steps:
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1. Cross-validation on the training set. AllK classi�ers are trained on n_folds−
1 folds of Xtrain. Then a classi�cation table (or context) is formed where a
cross is put for object i and classi�er clj if clj correctly classi�es object i
after training on n_folds− 1 folds (where object i belongs to the rest fold);

2. Running base classi�ers. All K classi�ers are trained on the whole Xtrain.
Then, a table of predictions is formed where (i, j) position keeps the pre-
dicted label for object i from Xtest by classi�er clj ;

3. Building top formal concepts of the classi�cation context. The topCbO al-
gorithm is run in order to build upper formal concepts of a classi�cation
context. These concepts have the largest possible number of objects in ex-
tents and minimal possible number of classi�ers in their intents (not counting
the upper-most concept);

4. Finding neighbors of the objects from Xtest. The objects from the test set
are processed one by one. For every object from Xtest we �nd its k nearest
neighbors from Xtrain according to the selected metric sim(x1, x2). Let us
say these k objects form a set Neighbors. Then, we search for a concept of a
classi�cation context which extent yields maximal intersection with the set
Neighbors. If the intent of the upper-most concept is an empty set (i.e., no
classi�er correctly predicted the labels of all objects from Xtrain, which is
mostly the case), then the upper-most concept (G, ∅) is ignored. Thus, we
select a classi�cation concept, and its intent is a set of classi�ers Csel;

5. Classi�cation. If Csel consists of just one classi�er, we predict the same label
for the current object from Xtest as this classi�er does. If there are several
selected classi�ers, then the predicted label is de�ned by majority rule.

6 Experiments

The algorithm, described above, was implemented in Python 2.7.3 and tested
on a 2-processor machine (Core i3-370M, 2.4 HGz) with 3.87 GB RAM.

We used four UCI datasets in these experiments - mushrooms, ionosphere,
digits, and nursery.1 Each of the datasets was divided into training and test
sets in proportion 70:30.

We ran 3 classi�ers implemented in SCIKIT-LEARN library 2(written in Python)
which served as base classi�ers for the RMCS algorithm as well. These were a
Support Vector Machine with Gaussian kernel (svm.SVC() in Scikit), logis-
tic regression (sklearn.linear_model.LogisticRegression()) and k Nearest
Neighbors classi�er (sklearn.neighbors.classification.
KNeighborsClassifier()).

The classi�cation accuracy of each classi�er on each dataset is presented in
Table 4 along with special settings of parameters. Moreover, for comparison, the
results for Scikit's implementation of bagging with SVM as a base classi�er
and AdaBoost on decision stumps 3 are presented.

1 http://archive.ics.uci.edu/ml/datasets
2 http://scikit-learn.org
3 https://github.com/pbharrin/machinelearninginaction/tree/master/Ch07
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Algorithm 1 Recommender-based Multiple Classi�er System

Input: {Xtrain, ytrain}, Xtest � are training and test sets, C = {cl1, cl2, ..., clK} �
is a set of base classi�ers, topCbO(context, n) � is a function for building the upper-
most concept of a formal context and its lower neighbors, dist(x1, x2) � is a distance
function de�ned in the attribute space, k � is a parameter (the number of neighbors),
n_fold � is the number of folds for cross-validation on a training set
Output: ytest � are predicted labels for objects fromXtest

train_class_context = [ ][ ] � is a 2-D array
test_class_context = [ ][ ] � is a 2-D array
for i ∈ 0 . . . len(Xtrain)− 1 do

for cl ∈ 0 . . . len(C)− 1 do

train classi�er cl on (n_fold− 1) folds not including object Xtrain[i]
pred = predicted label for Xtrain[i] by classi�er cl
train_class_context[i][cl] = (pred == ytrain[i])

end for

end for

for cl ∈ 0 . . . len(C)− 1 do

train classi�er cl on the whole Xtrain

pred = predicted labels for Xtest by classi�er cl
test_class_context[:][cl] = pred

end for

top_concepts = topCbO(class_context)
for i ∈ 0 . . . len(Xtest)− 1 do

Neighbors = k nearest neighbors of Xtest[i] from Xtrain according to sim(x1, x2)
concept = argmax(c.extent ∩ Neighbors), c ∈ top_concepts
Csel = concept.intent
labels = predictions for Xtest[i] made by classi�ers from Csel

ytest[i] = argmax(count_freq(labels))
end for

Table 4. Classi�cation accuracy of 6 algorithms on 4 UCI datasets: mushrooms (1),
ionosphere (2), digits (3), and nursery (4)

Data SVM,
RBF kernel
(C=1, γ=0.02)

Logit
(C=10)

kNN
(euclidean,
k=3)

RMCS
(k=3,
n_folds=4)

Bagging SVM
(C=1, γ=0.02)
50 estimators

AdaBoost
on decision
stumps,
50 iterations

1 0.998
t=0.24 sec.

0.996
t=0.17 sec.

0.989
t=1.2*10−2 sec.

0.997
t=29.45 sec.

0.998
t=3.35 sec.

0.998
t=44.86 sec.

2 0.906
t=5.7*10−3 sec.

0.868
t=10−2 sec.

0.858
t=8*10−4 sec.

0.933
t=3.63 sec.

0.896
t=0.24 sec.

0.934
t=22.78 sec.

3 0.917
t=0.25 sec.

0.87
t=0.6 sec.

0.857
t=1.1*10−2 sec.

0.947
t=34.7 sec.

0.92
t=4.12 sec.

0.889
t=120.34 sec.

4 0.914
t=3.23 sec.

0.766
t=0.3 sec.

0.893
t=3.1*10−2 sec.

0.927
t=220.6 sec.

0.913
t=38.52 sec.

0.903
t=1140 sec.
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Data SVM,
RBF kernel
(C=103, γ=0.02)

Logit
(C=103)

kNN
(minkowski,
p=1, k=5)

RMCS
(k=5,
n_folds=10)

Bagging SVM
(C=103,
γ=0.02)
50 estimators

AdaBoost
on decision
stumps,
100 iterations

1 0.998
t=0.16 sec.

0.999
t=0.17 sec.

0.999
t=1.2*10−2sec.

0.999
t=29.45 sec.

0.999
t=3.54 sec.

0.998
t=49.56 sec.

2 0.906
t=4.3*10−3 sec.

0.868
t=10−2 sec.

0.887
t=8*10−4 sec.

0.9
t=3.63 sec.

0.925
t=0.23 sec.

0.934
t=31.97 sec.

3 0.937
t=0.22 sec.

0.87
t=0.6 sec.

0.847
t=1.1*10−2 sec.

0.951
t=34.7 sec.

0.927
t=4.67 sec.

0.921
t=131.6 sec.

4 0.969
t=2.4 sec.

0.794
t=0.3 sec.

0.945
t=3*10−2 sec.

0.973
t=580.2 sec.

0.92
t=85.17 sec.

0.912
t=2484 sec.

As we can see, RMCS outperformed its base classi�ers in all cases, while it
turned out to be better than bagging only in case of multi-class classi�cation
problems (datasets digits and nursery).

7 Conclusion

In this paper, we described the underlying idea of multiple classi�er systems,
discussed bagging, boosting and stacking. Then, we proposed a multiple classi-
�er system which turned out to outperform its base classi�ers and two particular
implementations of bagging and AdaBoost in two multi-class classi�cation prob-
lems.

Our further work on the algorithm will continue in the following directions:
exploring the impact of di�erent distance metrics (such as the one based on
attribute importance or information gain) on the algorithm's performance, ex-
perimenting with various types of base classi�ers, investigating the conditions
preferable for RMCS (in particular, when it outperforms bagging and boosting),
improving execution time of the algorithm and analyzing RMCS's over�tting.
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Abstract. Tensor factorizations are computationally hard problems, and
in particular, often are significantly harder than their matrix counterparts.
In case of Boolean tensor factorizations – where the input tensor and all
the factors are required to be binary and we use Boolean algebra – much
of that hardness comes from the possibility of overlapping components.
Yet, in many applications we are perfectly happy to partition at least one
of the modes. In this paper we investigate what consequences does this
partitioning have on the computational complexity of the Boolean tensor
factorizations and present a new algorithm for the resulting clustering
problem. While future work aims at further tuning our algorithm for
Boolean tensor clustering, it already now can obtain better results than
algorithms solving different relaxations of the problem.

1 Introduction

Tensors become increasingly popular data representations in data mining. Ternary
(or higher order) relations, for instance, can be represented as binary 3-way
(or multi-way) tensors. Given such data, the question is whether there is any
underlying structure or regularity in the data. To approach that question, typically
tensor decomposition methods are applied. In this work, we restrict ourselves to
binary data and also restrict the factors in the decomposition to be binary.

Tensor decompositions with similar restrictions have previously been studied:
Cerf et al. [3] present an algorithm for the extraction of noise-tolerant itemsets
in binary relations. Erdős and Miettinen [6] propose a scalable algorithm for
Boolean CANDECOMP/PARAFAC (CP) and Tucker decompositions, and apply
it to information extraction [5].

The novelty of the Boolean tensor decomposition approach we present is the
restriction to non-overlapping factors in one mode. This takes apart complexity
from the task and also often fits the structure of real-world data. For example in
subject–relation–object data, the relations are non-overlapping: While a subject
can be linked to multiple objects and vice versa, the relation is a property of the
link between them. The algorithm we present has better approximability results,
is simpler than previous algorithms, and also outperforms them.

Existing work relates to different aspects of our approach: Jegelka et al. [9]
study the problem of clustering simultaneously all modes of a tensor (tensor
co-clustering). In the context of formal concept analysis, Belohlavek et al. [2] use

31



triadic concepts to obtain an optimal decomposition of three-way binary data.
That approach is extended to approximate solutions by Ignatov et al. [8]. Huang
et al. [7] and Liu et al. [12] (among others) study the problem where only one
mode is clustered and the remaining modes are represented using a low-rank
approximation. The latter form is closer to what we study in this paper, but the
techniques used in the continuous methods do not apply to the binary case.

2 Preliminaries

Throughout this paper, we indicate vectors as bold lower-case letters (v), matrices
as bold upper-case letters (M), and tensors as bold upper-case calligraphic letters
(T ). Element (i, j, k) of a 3-way tensor X is denoted as xijk. A colon in a subscript
denotes taking that mode entirely; for example, X ::k is the kth frontal slice of
X (shorthand Xk).

A tensor can be unfolded into a matrix by arranging its fibers (i.e. its columns,
rows, or tubes in case of a 3-way tensor) as columns of a matrix. For a mode-n
matricization, mode-n fibers are used as the columns and the result is X(n).

The outer product of vectors is denoted by �. For vectors a, b, and c of
length n, m, and l, X = a� b� c is an n-by-m-by-l tensor with xijk = aibjck.

The Boolean tensor sum of binary tensors X and Y is defined as (X ∨Y)ijk =
xijk ∨ yijk. For binary matrices X and Y where X has r columns and Y has r
rows their Boolean matrix product, X ◦Y , is defined as (X ◦Y )ij =

∨r
k=1 xikykj .

The Boolean matrix rank of a binary matrix A is the least r such that there
exists a pair of binary matrices (X,Y ) of inner dimension r with A = X ◦ Y .

Definition 1 (Boolean tensor rank). The Boolean rank of a 3-way binary
tensor X , rankB(X ), is the least integer r such that there exist r triplets of
binary vectors (ai, bi, ci) with X =

∨r
i=1 ai � bi � ci .

A binary matrix X is a cluster assignment matrix if each row of X has exactly
one non-zero element. In that case the Boolean matrix product corresponds to
the regular matrix product, X ◦ Y = XY .

For a tensor X , |X | denotes its number of non-zero elements. The Frobenius

norm of a 3-way tensor X is ‖X‖ =
√∑

i,j,k x
2
ijk. If X is binary, |X | = ‖X‖2.

The similarity between two n-by-m-by-l binary tensors X and Y is defined as
sim(X ,Y) = nml − |X −Y |.

Let X be n1-by-m1 and Y be n2-by-m2 matrix. Their Kronecker (matrix)
product, X ⊗ Y , is the n1n2-by-m1m2 matrix defined by

X ⊗ Y =




x11Y x12Y ··· x1m1
Y

x21Y x22Y ··· x2m1
Y

...
...

. . .
...

xn11Y xn12Y ··· xn1m1Y


 .

The Khatri–Rao (matrix) product of X and Y is defined as ‘column-wise
Kronecker’. That is, X and Y must have same number of columns (m1 = m2 =
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m), and their Khatri–Rao product X � Y is the n1n2-by-m matrix defined as
X � Y =

(
x1 ⊗ y1,x2 ⊗ y2, . . . ,xm ⊗ ym

)
. Notice that if X and Y are binary,

so are X ⊗ Y and X � Y .
The Boolean tensor CP decomposition mirrors the standard tensor CP de-

composition.

Definition 2 (Boolean CP). Given an n-by-m-by-l binary tensor X and an
integer r, find binary matrices A (n-by-r), B (m-by-r), and C (l-by-r) such that
they minimize |X −∨r

i=1 ai � bi � ci|.
Following Kolda and Bader [11], we use [[A,B,C]] to denote the normal 3-way
CP and [[A,B,C]]B for the Boolean CP. We can also write the Boolean CP
as matrices using unfolding. The matrix product has to be the Boolean matrix
product while the Khatri–Rao product is closed under the Boolean algebra:

X(1) = A ◦ (C �B)T , X(2) = B ◦ (C �A)T , X(3) = C ◦ (B �A)T . (1)

Both problems, finding the least error Boolean CP decomposition and deciding
the Boolean tensor rank, are NP-hard [13].

3 Problem Definition

We consider the variation of tensor clustering where the idea is to cluster one
mode of a tensor and potentially reduce the dimensionality of the other modes.

Assuming a 3-way tensor and that we do the clustering in the last mode, we
can express the Boolean CP clustering (BCPC) problem as follows:

Definition 3 (BCPC). Given a binary n-by-m-by-l tensor X and an inte-
ger k, find matrices A ∈ {0, 1}n×k, B ∈ {0, 1}m×k, and C ∈ {0, 1}l×k such
that C is a cluster assignment matrix and that the tuple (A,B,C) maximizes
sim(X , [[A,B,C]]B)

To understand what BCPC does, we use the unfolding rules (1) and write
X(3) ≈ C(B�A)T , where we can see that we have restricted the type of cluster
centroids: While in a general clustering problem, we would aim to cluster the
frontal slices of X into k clusters each represented by an n-by-m matrix, in this
setting each cluster representative has to be of type (b⊗ a)T . This restriction on
the cluster centroids plays a crucial role in the decomposition, as we shall see
shortly.

4 Solving Maximum-Similarity BCPC

Given a tensor X , for the optimal solution to BCPC, we need matrices A, B, and
C that maximize sim(X(3),C(B �A)T ). If we replace B �A with an arbitrary
binary matrix, this would equal the hypercube segmentation problem defined
in [1]: Given a set S of l vertices of the discrete d-dimensional cube {0, 1}d, find
k vertices P1, . . . , Pk ∈ {0, 1}d and a partition of S into k segments to maximize∑k

i=1

∑
c∈S sim(Pi, c). Therefore we employ an algorithm that resembles those

for hypercube segmentation, with the added restrictions to our centroid vectors.
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Algorithm 1 SaBoTeur algorithm for the BCPC

Input: A 3-way binary tensor X , number of clusters k, number of samples r.
Output: Binary factor matrices A and B; cluster assignment matrix C.
1: function SaBoTeur(X , k, r)
2: repeat
3: Sample k rows of X(3) into matrix Y
4: Find binary matrices A and B that maximize sim(Y , (B �A)T )
5: Cluster C by assigning each row of X(3) to its closest row of (B �A)T

6: until r resamples are done
7: return best A, B, and C
8: end function

4.1 The Algorithm

Alon et al. [1] gave an algorithm for the hypercube segmentation problem that
obtains similarity within (1 − ε) of the optimum. The running time of the

algorithm is eO((k2/ε2) ln k)nml for n-by-m-by-l data. While technically linear in
data size, the first term turns the running time unfeasible even for moderate
values of k (the number of clusters) and ε. We therefore base our algorithm
on the simpler algorithm by Kleinberg et al. [10] that is based on random
sampling. This algorithm obtains an approximation ratio of 0.828 − ε with
constant probability and running time O(nmlk(9/ε)k ln(1/ε)). While the running
time is still exponential in k, it is dominated by the number of samples we
do: each sample takes time O(nmlk) for k clusters and n-by-m-by-l data. For
practical purposes, we can keep the number of samples constant (with the cost
of losing approximation guarantees, though).

Our algorithm SaBoTeur (Sampling for Boolean Tensor clustering), Algo-
rithm 1, considers only the unfolded tensor X(3). In each iteration, it samples k
rows of X(3) as the initial, unrestricted centroids. It then turns these unrestricted
centroids into the restricted type in line 4, and then assigns each row of X(3) to
its closest restricted centroid. The sampling is repeated multiple times, and in
the end, the factors that gave highest similarity are returned.

The algorithm is extremely simple, which is an asset as it gives a very fast
algorithm that, as we shall see in Section 5, also performs very well. In line 3 the
algorithm samples k rows of the data as its initial centroids. Kleinberg et al. [10]
proved that among the rows of X(3) that are clustered into the same optimal
cluster, one is a good approximation of the (unrestricted) centroid of the cluster.
Intuitively, then, if we sample one row from each cluster, the sample has a high
probability of inducing a close-optimal clustering.

4.2 Binary Rank-1 Matrix Decompositions

The final piece of the SaBoTeur algorithm is to turn the unrestricted centroids
into the restricted format required by the BCPC problem (line 4). We start by
showing that this problem is equivalent to finding the maximum-similarity binary
rank-1 decomposition of a binary matrix:
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Algorithm 2 Approximate maximum-similarity binary rank-1 decompositions

Input: An n-by-m binary matrix X.
Output: Binary vectors a and b.
1: function A(X)
2: for all rows xi of X do
3: Let b = xi

4: Find a maximizing sim(X,abT )
5: end for
6: return best vectors a and b
7: end function

Definition 4 (Binary rank-1 decomposition). Given an n-by-m binary ma-
trix X, find an n-dimensional binary vector a and an m-dimensional binary
vector b that maximize sim(X,a� b).

Lemma 1. Given an k-by-nm binary matrix X, finding n-by-k and m-by-k
binary matrices A, B that maximize sim(X, (B �A)T ) is equivalent to finding
the most similar binary rank-1 approximation of each row x of X, where the
rows are re-shaped as n-by-m binary matrices.

Proof. If xi is the ith row of X and zi is the corresponding row of (B �A)T ,

then sim(X, (B �A)T ) =
∑k

i=1 sim(xi, zi), and hence we can solve the problem
row-by-row. Let x = (x1,1, x2,1, . . . , xn,1, x1,2, . . . , xn,m) be a row of X. Re-write
x as an n-by-m matrix in column major order.

Consider the row of (B�A)T that corresponds to x, and notice that it can be
written as (b⊗ a)T , where a and b be the columns of A and B that correspond
to x. As (b⊗ a)T = (b1a

T , b2a
T , · · · , bmaT ), re-writing it similarly as x we get

(b⊗a)T = (a1b1, a2b1, . . . , anb1, a1b2, . . . , anbm) = abT = a�b. Thus, we obtain
sim(x, (b⊗ a)T ) = sim(Y ,a� b). ut

We present a simple, deterministic algorithm that approximates the maximum
similarity within 0.828, Algorithm 2. It is similar to the algorithm for hypercube
segmentation based on random sampling presented by Kleinberg et al. [10]. The
algorithm considers every row of X as a potential vector b and finds the best a
given b. Using Lemma 3.1 of [10] it is straight forward to show that the algorithm
achieves the claimed approximation ratio:

Lemma 2. Algorithm 2 approximates the optimum similarity within 0.828 in
time O(nmmin{n,m}).

Proof. To prove the approximation ratio, let a∗(b∗)T be the optimum decompo-
sition. Consider the rows in which a∗ has 1. Per Lemma 3.1 of [10], selecting one
of these rows, call it b, gives us sim(X,a∗bT ) ≥ (2

√
2− 2)sim(X,a∗bT ) (notice

that a∗bT agrees with the optimal solution in rows where a∗ is zero). Selecting a
that maximizes the similarity given b can only improve the result, and the claim
follows as we try every row of X.

If n < m, the time complexity follows as for every candidate b we have to
make one sweep over the matrix. If m < n, we can operate on the transpose. ut

35



4.3 Discussion

Lemma 1 gives us yet another way of interpreting BCPC, namely, in BCPC
each centroid must be a binary rank-1 matrix. One could define a more general
variant where the centroids are arbitrary-rank binary matrices. Between these
two extrema is a problem where the (Boolean) ranks of the centroids are bounded
from above by some constant r < min{n,m}. For such a problem, however,
finding the centroids is even harder than it is now, as it essentially requires us to
solve the Boolean matrix factorization problem which is a hard problem even to
approximate [14].

5 Experimental Evaluation

5.1 Other Methods and Evaluation Criteria

We decided to compare SaBoTeur to other Boolean tensor CP methods, and for
some real-world experiments we also used a continuous CP method.

The Boolean CP methods we used for comparison were BCP ALS [13] and
Walk’n’Merge [6]. BCP ALS is based on iteratively updating the factor matrices
one at a time (similarly to the classical alternating least squares optimizations),
while Walk’n’Merge is a recent algorithm for highly scalable Boolean tensor
factorization in sparse binary tensors. We did not use Walk’n’Merge on synthetic
data as BCP ALS is expected to perform better on smaller and denser tensors [6]
but we used it on larger real-world tensors; BCP ALS, on the other hand, does not
scale well to larger tensors and hence we had to omit it from some experiments.

Of the continuous methods we used CP APR [4] (implementation from the
Matlab Tensor Toolbox v2.51), an alternating Poisson regression algorithm that
is specifically developed for sparse (counting) data.

For synthetic data, we report the relative similarity, that is, the fraction of
the elements where the data and the clustering agree. For real-world data, we
report the error measured using the squared Frobenius norm. This norm however
can help the real-valued methods, as it scales all errors less than 1 down, but at
the same time, small errors cumulate unlike with fully binary data. To alleviate
this problem, we also rounded the reconstructed tensors from CP APR to binary
tensors. From different rounding thresholds between 0 and 1 we selected the one
that gave the lowest (Boolean) reconstruction error.

5.2 Synthetic Experiments

To test the SaBoTeur algorithm in a controlled environment we created synthetic
data sets that measured the algorithm’s response to (1) different numbers of
clusters, (2) different density of data, and (3) different levels of noise. All tensors
were 700-by-500-by-50. All data sets were created by first creating ground-truth
binary factor matrices A, B, and C. The default number of clusters was 7 and

1 http://www.sandia.gov/~tgkolda/TensorToolbox/
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Fig. 1. Synthetic experiment results. Markers are at the mean over five random tensors
and the width of the errorbars is twice the standard deviation.

the default density of A and B was 0.2. A symmetric random noise was applied
to the tensor and flipped 4% of the elements by default.

We varied each of the three features one at a time keeping the others in their
default values, and created 5 random copies on each parameter combination.
The results we report are mean values over these five random copies. In all
experiments, the number of clusters (or factors) was set to the true number of
clusters used to create the data. The number of re-samples in SaBoTeur was set
to r = 20 in all experiments. We only used BCP ALS to compare against in the
synthetic experiments.

Varying the number of clusters. The number of clusters varied from 3 to 15 with
steps of 2. The results are shown in Figure 1a. Perhaps the most surprising result
here is how much better SaBoTeur is compared to BCP ALS, especially given that
SaBoTeur’s answer is a valid Boolean CP decomposition.

Varying the density. The density of the factor matrices varied from 10% to 30%
with steps of 5%. The results can be seen in Figure 1b. Again SaBoTeur is better
than BCP ALS: it has gradually declining slope for increased density, whereas
BCP ALS’s results dive much faster.

Varying the noise. In the final synthetic experiment, we varied the noise level
between 2% and 10% with steps of 2%. As is to be expected, increasing the noise
decreases the results of both algorithms. Both algorithms exhibit roughly linear
decrease in the similarity w.r.t. noise level, but SaBoTeur is again consistently
the better of the two (results not shown).

Scalability. SaBoTeur is implemented in Matlab2 and we run the scalability tests
on a dedicated machine with 8 Intel Xeon E5530 2.4GHz processors and 48GB

2 The code is available from http://www.mpi-inf.mpg.de/~pmiettin/btc/
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Fig. 2. Scalability experiment results. Markers are at the mean over five random tensors
and the width of the errorbars is twice the standard deviation.

of main memory. All reported times are wall-clock times. For these experiments,
we created a new set of tensors. First, we tested the effect the number of clusters
has to the algorithm. The data was 400-by-400-by-80 and the number of clusters
varied from 10 to 40 with steps of 10. As can be seen in Figure 2a, we observe
that the algorithm scales almost-linearly with the number of clusters. The slight
non-linearity is due to the increasing number of non-zeros in the data in higher
values of k. For the second experiment, we varied the dimensionality of the first
and second mode between 200 and 800 with steps of 200. The results can be
seen in Figure 2b, where we observe close-to-quadratic behavior, in line with the
theoretical running time of the algorithm.

Discussion. The synthetic experiments confirm that SaBoTeur is capable of
recovering the latent cluster structure from the synthetic data sets. Arguably
the most surprising result of the synthetic experiments was that SaBoTeur was
consistently better than BCP ALS, even though the latter has more freedom to
obtain better solutions.

5.3 Real-World Data

Datasets and earlier experiments. We tested SaBoTeur with three real-world data
sets: The Resolver data contains entity–relation–entity tuples from the TextRunner
open information extraction algorithm3 [15]. A sample of size 343-by-360-by-200
(entity-by-entity-by-relation) was used for the experiments. The Enron data4

(146-by-146-by-38) contains information about who sent e-mail to whom (rows and
columns) per months (tubes). The TracePort data set5 (10 266-by-8 622-by-501)

3 http://www.cis.temple.edu/~yates/papers/jair-resolver.html
4 http://www.cs.cmu.edu/~enron/
5 http://www.caida.org/data/passive/passive_2009_dataset.xml
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Table 1. Reconstruction errors rounded to the nearest integer. ‘—’ denotes that the
experiment was not conducted. Part of the results are from [6] and [13].

Algorithm Enron TracePort Resolver

SaBoTeur 1 765 10 946 1 488
BCP ALS 1 850 — 1 492
Walk’n’Merge 1 753 10 968 —
CP APR 1 619 11 069 1 497
CP APR 0/1 1 833 11 121 1 543

contains anonymized passive traffic traces (source and destination IP and port
numbers) from 2009. With Enron and TracePort data sets, for Walk’n’Merge,
CP APR and ParCube we used the results from [6]. The results for BCP ALS and
Resolver are from [13]. The number of clusters/factors was set to k = 15 except
for Enron data, for which it was k = 12.

Results. The results with the real-world data sets can be seen in Table 1. SaBoTeur
continues its impressive results, being roughly on par with the other binary
methods and with TracePort even better than the continuous method, CP APR. In
conjunction with what we observed in the synthetic setting, SaBoTeur consistently
outperforms BCP ALS despite solving a more restricted problem.

6 Conclusions and Future Work

We have studied the problem of clustering one mode of a 3-way binary tensor
while simultaneously reducing the dimensionality in the two other modes. This
problem bears close resemblance to the Boolean CP tensor decomposition, but
the additional clustering constraint makes the problem significantly different.
The main source of computational complexity, the consideration of overlapping
factors in the tensor decomposition, does not play a role in BCPC. This lets us
design algorithms with provable approximation guarantees better than what is
known for the Boolean matrix and tensor decompositions.

Our experiments show that the algorithm for BCPC, SaBoTeur, is better than
the dedicated (Boolean) tensor decomposition algorithms in building a Boolean
CP decomposition of a tensor. Sometimes SaBoTeur also outperforms continuous
methods for non-Boolean CP decomposition.

The essential piece, the maximum-similarity binary rank-1 approximation
achieves an approximation ratio of 0.828 in O(nmmin{n,m}) time, and with that
dominates the running time. Faster algorithms for the rank-1 approximation (with
better approximation guarantees) would have an instant impact on SaBoTeur.

For the rank-1 approximation, the running time of O(nmmin{n,m}) is as-
cribed to the fact that every row of X (resp. every column if n < m) is tried
as candidate. Because a∗bT already agrees with the optimal solution in rows
where a∗ is zero, it would be enough to take the non-zero elements into account
rather than the complete rows. This modification is in particular beneficial to
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sparse settings. Further improvement in terms of speed could be gained from
parallelization of the algorithm, possibly using a MapReduce model. Each of the
two concatenated loops in Algorithm 2 could be executed in parallel. Also early
stopping might be advantageous if no rows are left that could improve the result.
This might however require an additional step of sorting the rows according to
their number of non-zero elements. Future investigations need to show which
parallel configuration is most beneficial. Another aspect of refinement concerns
the introduction of data structures and operations tailored to Boolean algebra.
Storing the data as bit vectors and the use of native bit operations might yield
additional speedup. At the same time this reduces the space needed to store the
data compared to the representation as vectors of numbers.

Overall, this paper covered an extreme of the Boolean tensor clustering: each
centroid was restricted to a rank-1 binary matrix. In future research, we hope to
better cover the spectrum between this problem and the other extreme, clustering
the frontal slices of the tensor with no reduction on the other modes.
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Abstract. Nowadays, transportation vehicles are equipped with intelli-
gent sensors. Together, they form collaborative networks that broadcast
real-time data about mobility patterns in urban areas. Online intelligent
transportation systems for taxi dispatching, time-saving route finding
or automatic vehicle location are already exploring such information in
the taxi/buses transport industries. In this PhD spotlight paper, the au-
thors present two ML applications focused on improving the operation
of Public Transportation (PT) systems: 1) Bus Bunching (BB) Online
Detection and 2) Taxi-Passenger Demand Prediction. By doing so, we in-
tend to give a brief overview of the type of approaches applicable to these
type of problems. Our frameworks are straightforward. By employing on-
line learning frameworks we are able to use both historical and real-time
data to update the inference models. The results are promising.

Keywords: GPS data, Public Transportation, Bus Bunching, Taxi-Passenger
Demand, Probabilistic Reasoning, Online Learning.

1 Introduction

The increasing number of running road vehicles worldwide is enlarging the com-
plexity of transportation networks - especially of its design and operations.
Therefore, it is becoming more difficult to maintain the reliability of this means
of transportation, thereby decreasing passenger satisfaction. On the other hand,
rising fuel price are increasing its operational costs.

GPS (Global Positioning System) devices are already in place in many
of these networks. There are also many Intelligent Transportation Systems
(ITS) that already successfully explore this kind of data, such as Intelligent
Routing [1], Bus Travel Time prediction [2] or efficient taxi dispatching [3].

41



Despite the intrinsic online characteristics regarding the aforementioned prob-
lems, many of the techniques employed are batch learners - which are not pre-
pared to detect the concept drift often introduced by unexpected events, which
emerge in the system, such as traffic jams or a massive demand.

In fact, GPS data is mainly an unbounded stream of data. This kind of
data is produced continuously at a high speed from multiple locations and time
granularities, while its distribution may change over time (e.g. a continuous but
speedy vehicular flow on a highway is heavily decreased by a traffic jam). How-
ever, state-of-art Machine Learning (ML) algorithms have strong assumptions -
such as stationary data distributions and the existence of finite training sets -
that make their application to this kind of data inefficient or even useless [4].
On the other hand, techniques that learn from data streams have seen great
development over the last decade and there has also been an increase in applica-
tions used in many sensor networks – such as our own – and which have already
proved to be efficient in dealing with these characteristics.

In this PhD thesis, we intend to explore such techniques related to GPS data
streams broadcasted by the vehicular networks comprised in Public Transporta-
tion (PT) networks, namely, 1) from buses and 2) from taxis. Our goal is to
produce ITS applications that will increase the profitability of companies, by
providing important information that otherwise would not be possible to mine.
The above mentioned networks have common characteristics and synergies that
should be explored together. They can be enumerated as follows:

1. Both provide a continuous stream of data about the network’s behavior,
based not only on vehicle location, but also on other status variables, such
as the number of passengers travelling within or of a mechanical nature.

2. Both enclose vehicular networks, and their operations rely on the a) de-
pendences and/or b) correlations between vehicle behaviors. Some exam-
ples of these could be a) the delay propagation effect of a highly frequented
bus route, introduced by a vehicle that is failing to fulfill its schedule, or b)
the expected distance of a taxi service, departing from a location of interest,
given that the last N vehicles, which departed from such a spot, experienced
a cruising distance greater (or smaller) than a given time threshold.

3. The passenger demand in PT services, provided by such networks, is
highly dependent on the regularities of human behavior, such as the
sleep period at night, or the difference between travel origins and destinations
on weekdays/weekends.

4. The planning of these networks is highly dependent on seasonal events
exhibited during the year, as in periods of school holidays or over the
Christmas season. Important planning stages of these networks (e.g.: the
location of taxi stands in a given urban area, or the planning of bus schedules)
are relevant examples of the dependency in place.

5. The real-time control of both is highly sensitive to anomalous demand
events that may unbalance the expected relationship between service offer
and demand - and thereby provoke unexpected disruptions in such ser-
vices. Examples of this issue could be overcrowded buses caused by large
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scale events (e.g. sporting events, concerts, etc.), which may cause a tempo-
rary absence of taxi offers in some locations, due to an exponential increase
in passenger demand.

The aforementioned characteristics represent similarities that are reflected
in the data provided, namely, 1) by exhibiting the same periodicity of existing
regularities (daily, weekly) and 2) common passenger origin/destination matri-
ces; 3) by revealing the existence of anomalous demand events (thereby allowing
their detection in both time and space) or 4) even common data distributions of
the time series of passenger count. Consequently, such streaming data provides
opportunities to improve both the operational planning and control of networks,
by exploring methods to learn and therefore identifying these patterns.

In this spotlight paper, we present two ML frameworks for solving two real-
world problems: 1) Bus Bunching (BB) Online Detection and the 2) Taxi- Pas-
senger Demand Prediction. By doing so, we intend to give a brief overview of
the type of approaches applicable to these type of problems.

2 Case Study

Our case study took place in the city of Porto in Portugal. Two data streams
of events from two PT companies operating in Porto were used to evaluate our
approaches. This city is the center of a medium-sized urban area, consisting of
1.3 million inhabitants.

To test our BB online detection framework, we used data collected from
STCP, the Public Transport Operator in Porto. It describes trips of three distinct
lines (A, B, C) during 2010. Each line has two routes - one for each way A1, A2,
B1, B2, C1, C2. Line A is a common urban line between Viso (an important
neighbourhood in Porto) and Sá da Bandeira, a downtown bus hub. Line B is also
an urban line, although it is an arterial one. It traverses the main interest points
in the city by connecting two important street markets: Bolhão - located in the
downtown area - and Mercado da Foz, in the most luxurious neighbourhood in
the city. Line C connects the city’s downtown area to the farthest large-scale
neighborhood in the region (Maia).

Concerning the second application case, we focused on the event data stream
from a taxi company (which contains 441 running vehicles) operating in Porto,
Portugal, between August 2011 and April 2012. This dataset contains informa-
tion about more than one million fared trips.

3 Bus Bunching Online Detection

It is known that some schedule instability exists, especially in highly frequent
routes (10 minutes or less). In these kinds of routes the headway (time sepa-
ration between vehicle arrivals or departures) regularity is more important than
the fulfilment of the arrival time at bus stops. In fact, a small delay in a bus’
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arrival increases the number of passengers at the next stop. This number in-
creases the dwell time (time period where the bus is stopped at a bus stop). On
the other hand, the next bus will have fewer passengers and shorter dwell times
without delays. This will continue as a snow ball effect and, at a further point
of that route, the two buses will meet at a bus stop, forming a platoon. This
phenomenon is denominated as Bus Bunching(BB).

3.1 Related Work

One of the first works to address the BB phenomenon was presented by Powell
and Sheffi [5]. After this paper, many other works followed the stability concept
(i.e. if we guarantee a stable headway, BB events will never emerge) by constantly
introducing corrective actions into the system. Some examples are the work in [6],
where each bus is an agent that negotiates with the other buses about which
bus is holding up time at each stop or in [7], where the negotiation is cantered
around the cruising speed.

The employment of historical data to address this problem is very recent.
In [8], a model to determine the optimal holding time at each stop based on
real-time location is presented. Delgado et al. [9] also suggested preventing pas-
sengers from boarding by establishing maximum holding times to maintain the
headway stable. The efficiency of these types of frameworks is usually demon-
strated through simulations, assuming 1) stochastic demand or 2) using histori-
cal data. Despite their usefulness, all these works do not account for the use of
both historical and real-time data simultaneously. Moreover, they have low in-
terpretability because their outputs do not provide any insight on what the best
corrective action is. The predictive method presented in the next section is able
to deal with the network’s stochasticity, regardless of which corrective action we
opt to take. Finally, it is important to highlight that the majority of the work
described in the literature tries to maintain a stable headway at the cost of some
schedule uncertainty (introduced by the constant corrective actions), despite the
existing risk of forming a bus platoon at a further stop.

3.2 Methodology

The most important variable in regards to BB events is the headway (i.e. h).
Theoretically, the headway between two consecutive trips should be constant.
However, due to stochastic events that arise during bus trips, the headway suffers
some variability. BB does not only occur when a bus platoon is formed, but
occurs as soon as the headway becomes unstable. The headway between two
consecutive buses is defined as unstable whenever it is strictly necessary to apply
a corrective action in order to recover the headway value to acceptable levels.
Such a threshold is usually defined in function of the frequency f = h1 (time
between the departure of two consecutive buses) [10].

Let the arrival time be defined as Tk,i+1 = Tk,i + dwk,i + CTTk,i,i+1 where
dwk,i denotes the dwell time at the stop i and CTTk,i,i+1 stands for the Cruise
Travel Time between those two consecutive stops. Therefore, it is possible to
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anticipate the occurrence of BB events if we are able to predict the value of
dwk,i + CTTk,i,i+1, which is often denominated by Link Travel Time (LTT)
[11]. Let the LTT Prediction be defined as an offline regression problem where
the target variable is the cruising time between two consecutive bus stops. Such
predictions are computed on a daily basis (the forecasting horizon) using the
θ most recent days (the learning period) to train our model. Consequently, we
obtain a set of predictions for all the t trips of the day denoted as P =

⋃t
i=1 Pi =

{P1,1, P1,2, ..., P1,s, ..., Pt,s}. P is then incrementally refined in two steps: 1) trip-
based and 2) stop-based. Both steps are based on the Perceptron’s Delta Rule [12]
by reusing each prediction’s residuals to improve the further ones.

Let e denote the last trip completed before the current trip starts (i.e. c).
The trip-based refinement consists of comparing the predictions of e Pe =
{Pe,1, Pe,2, ..., Pe,s} with the real times Te to update Pc. Firstly, we compute

the residuals as Re = Te −Pe and then its average value as νe =
∑s

i=1
Te,i−Pe,i

s .
Secondly, an user-defined parameter 0 < α << 1 is employed to set a threshold
th able to identify trips where the error is larger than expected. Consequently,
th = α ∗ fe. Three other variables are then defined: ϑp = 0, ϑn = 0 and β′ = β.
The first two are counters that are incremented whenever the prediction error is
heading to the same way (positive/negative) in consecutive trips (e.g. if µe > th
ϑp is incremented; otherwise, ϑp = 0). The beta value β′ stands for the residual’s
percentage to be added to Pc (its initial value is user-defined). It is initialized
with another user-defined parameter 0 < β << 1 and updated according to a
user-defined learning rate 0 < κ <= 1. Consequently, if ϑp or ϑn are incremented,
the Pc and β′ are updated as P ′c = Pc ± (β′ × Pc) and β′ = β′ + ϑ ∗ (1 + κ) ∗ β,
respectively. If both ϑ stay the same, β′ resumes its original value as β′ = β. The
error tests are always performed over the regression results Pc and not over the
updated arrays P ′c. These updates are performed incrementally for every trip.

Given the updated predictions of two consecutive trips (P ′c, P
′
c+1), it is possi-

ble to obtain the predicted headways Ec = P ′c+1−P ′c (i.e. an offline prediction).
The second refinement uses the headway residuals HRc = Hc − Ec to update
Ec stop-by-stop. Incrementally, we can obtain online headway predictions as
E′c,i = Hc,i−1 + Ec,i − Ec,i−1,∀i ∈ {2, s}. The problem resides in updating the
headway online prediction for the next stop E′c,i given the value of HRc,i−1. Let
γ′ = γ be the residual’s percentage to add to the prediction where its initial value
for each trip (0 < γ << 1) is an user-defined parameter. E′c,i can be updated
as E′′c,i = E′c,i + (HRc,i−1 ∗ γ′). Finally, γ′ is also updated by comparing the
residuals of Ec and E′c (HRc and HR′c, respectively). If |HRc| > |HR′c|, then
γ′ = γ′ ∗(1−γ). Otherwise, γ′ = γ′ ∗(1+γ). The progression of γ′ is bounded by
an user-defined domain [γmin, γmax]. The value of E′′c,i is also used to update the
offline predictions for further stops as E′c,j = E′′c,j−1 + Ec,j − Ec,j−1 ∧ j = i+ 1
and E′c,j = E′c,j−1 + Ec,j − Ec,j−1,∀j ∈ [i+ 2, s].

3.3 Experimental Results

In the offline regression problem, a state-of-art algorithm was employed: Random
Forest (RF). We did so by following previous work about this topic, which used
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data from the same source [13]. The experiments were conducted using the R
Software [14]. A sensitivity analysis was conducted on the regression parameters.
The best parameter setting was mtry=3 and ntrees=750. The learning period
used was θ = 7 days by employing our domain-knowledge. The error threshold
to trigger the inter-trip update rule was set to α = 0.05 while the initial value
for the residual’s percentage to be employed is β = 0.01. The learning rate
kappa was set to 0.3. The initial residual’s percentage employed on the stop-
based update rule is γ = 0.1 while its domain is γ ∈ [0.005, 0.3]. Finally, the ρ
was set to 360 seconds. All these parameters were set by employing an apriori
cross-validation test on some close range of values.

It is possible to divide the evaluation of our framework into two distinct
contexts: (i) the Mean Absolute Error (MAE) and (ii) the BB detection accuracy.
With the first one, we employed a prequential evaluation [15] by evaluating just
the prediction made for the LTT performed for the next bus stop. We did so
by using the MAE on (1) the offline regression output and then on the (2)
inter-trip and (3) intra-trip refinement. In the BB detection context, Accuracy,
Precision and Recall were used as evaluation metrics. A weighted Accuracy was
also employed, by weighing the trips where a BB event emerged ten times more
than the remaining ones. The Average Number of Stops Ahead is also displayed
to show which our forecasting horizon is. The results are presented in Table
1. More than only just identifying a problematic link or stop, the BB online
detection framework also identifies the vehicle pair where a corrective action
must be made. In the current dataset, it was able to detect BB events thirteen
stops ahead (on average), which gives more than enough room to perform any
of the four possible corrective actions. Despite its achievements, this framework
also presents some limitations, namely, with the regression task and with the
employed parameters. The regression task was tested using only one algorithm.
Even though considering that it presented good results with similar data [13],
we do not know if there is another that could perform better, by using a similar
computational effort. On the other hand, both the prediction refinements and

Table 1: Experimental results. The times are in seconds. The ALL column con-
tains the average for the first two spans and the sum for the last one.

A1 A2 B1 B2 C1 C2 ALL

MAE offline regression 1356.96 643.99 1475.22 1871.01 473.61 2776.57 1432.88
MAE inter-trip update 148.85 92.91 124.99 148.85 40.65 123.77 113.34
MAE incremental update 13.21 26.35 22.67 13.21 31.79 27.47 22.45

Accuracy 97.99% 96.34% 97.08% 97.83% 96.63% 93.83% 96.62%
Weighted Accuracy 93.97% 93.57% 94.57% 95.52% 95.73% 91.51% 94.14%
Precision 65.88% 40.85% 41.53% 45.70% 69.44% 51.67% 52.51%
Recall 81.81% 83.18% 83.07% 83.24% 94.48% 87.95% 85.62%
Avg. Nr. of Stops Ahead 11.85 14.78 13.88 15.01 12.96 14.52 13.83

Correct BB Predictions 558 460 363 303 1811 1497 4992
Real BB Events 682 553 437 364 1917 1702 5655
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the event detection framework rely on a large set of parameters. To get a fair
parameter setting can be a hard task – especially if the user has no expertise
with the case study approached.

4 Taxi-Passenger Demand Prediction

Taxi driver mobility intelligence is an important factor to maximize both profit
and reliability within every possible scenario. Knowledge about where services
will actually emerge can be an advantage for the driver – especially when there
is no economic viability to adopt random cruising strategies to find passen-
gers. The GPS historical data is one of the main data sources for this topic
because it can reveal underlying running mobility patterns. Multiple works in
the literature have already successfully explored this type of data with various
applications, such as modelling the spatiotemporal structure of taxi services [16],
building passenger-finding strategies [17] or even predicting taxi location through
a passenger-perspective [18]. Despite their useful insights, most techniques re-
ported are tested using offline test-beds, discarding some of the main advantages
of this type of signal. In other words, they do not provide any live information
about the location of a passenger or the best route to pick-up a passenger at the
current date/time (i.e. real-time performance).

4.1 Methodology

Let S = {s1, s2, ..., sN} be the set ofN taxi stands of interest andD = {d1, d2, ..., dj}
be a set of j possible passenger destinations. Consider Xk = {Xk,0, Xk,1, ..., Xk,t}
to be a discrete time series (aggregation period of P -minutes) for the number of
demanded services at a taxi stand k. Our goal is to build a model which deter-
mines the set of service counts Xk,t+1 for the instant t + 1 per each taxi stand
k ∈ {1, ..., N}. To do so, we propose three distinct short-term prediction models:
1) a Time Varying Poisson Model which handles the long term memory; 2) a
Weighted Time Varying Poisson Model, which sets weights to each data point
according with its date - where the most recent points weigh more than the older
ones and the weights are calculated through an Exponential Smoothing model;
3) an ARIMA model which handles the short-term memory through its high
reactibility to bursty changes to the process in place. The output prediction
is an Ensemble of the outputs produced by the aforementioned methods. We
employed a Sliding Window ensemble that computes and weighs the average of
those outputs. The weights are inverse to their error in the most recent samples.

This model is deeply described in section III in [19]. Moreover, an extended
version of this framework was also presented in [20], where both the Poisson and
the ARIMA models were extended to be calculated incrementally.

4.2 Experimental Results

The model was programmed using R language [14]. The prediction periodicity
was set to 5 minutes. Both the ARIMA model and the weight set were firstly
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set (and updated every 24h) through learning the underlying model (i.e. auto-
correlation and partial autocorrelation analysis) running on the historical time
series curve of each stand, during the last two weeks. To do so, we used an au-
tomatic time series function in the [forecast] R package - auto-arima and
the arima function from the built-in R package [stats]. The Time Varying
Poisson averaged models (both weighted and non-weighted) were also updated
every 24 hours.A sensibility analysis carried out with data previous to the one
used on these experiments determined the optimal values for the parameters α,
β and H as 0.4, 0.01 and 4 (i.e. a sliding window of 20 minutes), respectively.

The error measured for each model is presented in Table 2. The results are
firstly presented per shift and then globally. The overall performance is good: the
maximum value of the error using the ensemble was 25.90% during the evening
shift. The sliding window ensemble is always the best model in every shift and
case study considered. The models just present slight discrepancies within the
defined shifts. Our model took - on average - 37.92 seconds to build the next
prediction about the spatiotemporal distribution the demand by all stands.

4.3 Related Work

Little research regarding the demand prediction problem exists. Kaltenbrunner
et al. [21] detected the geographic and temporal mobility patterns over data
acquired from a bicycle network running in Barcelona. The authors’ goal was
to forecast the number of bicycles at a station to improve their deployment.
Yuan et. al presented in [22] a complete work containing methods about a) how
to divide the urban area into pick-up zones using spatial clustering; b) how a
passenger can find a taxi; and c) which trajectory is the best to pick-up the next
passenger. Although its results are promising, it is focused on improving the
trajectory of a single driver, disregarding the position of the remaining drivers.

The most similar work to our own is presented by Li et. al [16]. The authors
present a recommendation system to improve the drivers’ mobility intelligence.
To do so, data from a taxi network running in Hangzhou, China was used.
Firstly, they calculated the city hotspots - urban areas where pick-ups occur
more frequently. Secondly, they used ARIMA to forecast the number of pick-
ups at these hotspots over periods of 60 minutes. Thirdly, they presented an

Table 2: Error Measured on the Models using sMAPE.

Periods
Model

00h−08h 08h−16h 16h−00h 24h

Poisson Mean 27.67% 24.29% 25.27% 25.32%
W. Poisson Mean 27.27% 24.62% 25.66% 25.28%

ARIMA 28.47% 24.80% 25.60% 26.21%
Ensemble 24.86% 23.14% 24.07% 23.77%
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improved ARIMA depending both on time and day type. Despite their good
results, it just uses the most immediate historical data, discarding the mid and
long-term memory of the system; moreover, the proposed approach assumes fixed
periods of 60 minutes (i.e. there is just one prediction per hour). Our framework
is incremental. By doing so, it is able to produce predictions on-demand, which
is a true advantage facing the real-time characteristics of this type of decisions.

5 Final Remarks

GPS devices are now widespread. Taking full advantage of this rich source of
spatiotemporal data to support daily human activities comprises a relevant chal-
lenge for the Data Mining community. In this PhD spotlight paper, the authors
presented two ML applications focused on improving PT operations. The results
are promising. However, there are still many issues to be solved over a mid-term
period. The demand prediction must be used to perform commendations in the
most profitable urban areas to go to pick-up the drivers’ next service. The BB
detection framework still requires a large-scale sensitivity analysis of its parame-
ter set. How to select the most adequate corrective action for each situation will
also be addressed in our future work. Using both data sources simultaneously
on one of these problems can also provide a step forward in this research area.
However, further research must be employed to know how beneficial such shared
knowledge may be.
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Abstract. This paper proposes an algorithm to identify biochemical
reaction networks with time-varying kinetics. We formulate the prob-
lem as a nonconvex optimisation problem casted in a sparse Bayesian
learning framework. The nonconvex problem can be efficiently solved
using Convex-Concave programming. We test the effectiveness of the
method on a simulated example of DNA circuit realising a switched
chaotic Lorenz oscillator.

Keywords: Switched system, Sparse Bayesian Learning, Convex-Concave
programming.

1 Motivation, background and related work

Identification of switched systems, which are characterised by the interaction of
both continuous and discrete dynamics, is widely used in many different fields
such as systems/synthetic biology, econometrics, finance, biochemical engineer-
ing, social networks, etc. In this paper, we are interested in the identification of
switched biochemical reaction networks. Biochemical processes can go through
different phases in time; for example, a cell cycle in bacteria or diurnal alterna-
tions in plants. These switches are typically triggered by time dependent pro-
cesses or by some external force. Therefore, the dynamics of biochemical re-
actions can be modelled as a collection of submodels amongst which switches
occur over time. For biochemical reaction networks, the submodels are typically
nonlinear due to mass action kinetics.

In classical switched system identification, the submodels are typically as-
sumed to be linear or of the switch affine type [1], which is often used to ap-
proximate nonlinear dynamics. In [2], the structure of submodels is fixed and
a minimal number of switches between submodels is inferred. However, these
techniques are not generally applicable to biochemical kinetics due to highly
nonlinear terms and model complexity. In the nonlinear case, there is an addi-
tional problem of nonlinear basis selection, which is fixed and predefined in the
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linear case. Unlike the linear case, the number of nonlinear basis functions can
be infinite and one might have to use complicated nonlinear functions to model
the dynamics without any switches. In practice, if one is interested in obtain-
ing the least number of switches, the number of nonlinear basis functions will
typically grow, and vice versa, a small number of nonlinear basis functions will
result in many switches. Hence there are two different and competing minimi-
sation criteria: the number of switches between submodels and the number of
basis functions in each submodel.

In this paper, we cast the problem of identification of switched biochemical
reaction networks as a linear regression problem by defining a set of nonlinear
basis functions based on mass action kinetics. Minimising the number of switches
and/or the number of basis functions is typically addressed in such problems by
an `1 or `2 regularisation approach. In this paper, however, we take a sparse
Bayesian learning approach, which is shown to promote sparsity better than
to `1 methods [3–5]. By specifying sparse priors on the number of parameters
and the number of switches in this sparse Bayesian learning framework, the
identification problem is formulated as a nonconvex optimisation problem. By
exploiting the structure of the nonconvex optimisation problem, one can use
Convex-Concave programming techniques to solve the problem efficiently. One
illustrative example from DNA computation is used to show the effectiveness of
the proposed method.

2 Preliminaries on biochemical reaction networks

Consider a biochemical system with n species X1, . . . , Xn. We denote the con-
centration of species Xj as xj . Let U be the set of uni-species reactions and B
be the set of bi-species reactions. A uni-species reaction i ∈ U is defined by the
index ri ∈ {1, . . . , n} of its single reactant species, the associated real-valued rate
constant ki > 0, and the integer product coefficients for each species ci,j ≥ 0:
miXri

ki→ ci,1X1 + . . . + ci,nXn. A bi-species reaction i ∈ B is defined by the
indices ri,1, ri,2 ∈ {1, . . . , n} of its two reactant species, the real-valued rate
constant ki > 0, and the integer product coefficients for each species ci,j ≥ 0:
miXri,1 + niXri,2

ki→ ci,1X1 + . . . + ci,nXn. Using the law of mass action, the
dynamics of the concentrations xj ≥ 0 of species Xj are given according to the
ordinary differential equations

ẋj =−
∑

i∈U|ri=j
kix

mi
j −

∑

i∈B|ri,1=j
kix

mi
j xni

ri,2 −
∑

i∈B|ri,2=j
kix

mi
ri,1x

ni
j

+
∑

i∈U
ci,jkixri +

∑

i∈B
ci,jkixri,1xri,2 ,

(2.1)
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We can expand (2.1) for more than two species, though this can be rarely found
in reality due to highly improbable simultaneous three-species molecular collision
mechanisms.

Eq. (2.1) can be modelled using the general form: ẋ = Sv(x), where x is
the vector of species whose elements are xj , S is the stoichiometry matrix and
v(x) is a vector of propensity functions. The matrix S and the propensity vector
v(x) can be built based on the biochemical reactions and their rates. Hence,
without loss of generality we can assume that S is a matrix whose elements are
real constants and v(x) is a vector whose elements are nonlinear functions of x

as in (2.1). Biochemical processes can go through different phases in time; for
example, a cell cycle in bacteria or diurnal alternations in plants. These switches,
which are typically triggered by time dependent processes or by some external
force, can be fitted into our model as follows: ẋ = Sα(t)v(x), where α(t) is a
sequence of integers in a bounded set and Sα(t) takes values from an unknown
set {S1, . . . ,SNmodes

} depending on time.
In what follows, we consider the system dynamics expressed in discrete-time

and subjected to additive i.i.d. Gaussian noise ξ(k) with known statistics.

x(k + 1) = Sα(k)v(x(k)) + ξ(k). (2.2)

3 Problem formulation

3.1 Linear Regression Problem Formulation

Taking the transpose of both sides of (2.2) and considering the ith state variable
xi of (2.2), we can obtain

xi(k + 1) = v>i (x(k)) ·
(
S
α(k)
i,:

)>
+ ξi(k),

=
(
fi1(x(k)) . . . fiN (x(k)

)
·wi(k) + ξi(k),

(3.1)

where S
α(k)
i,: represent the ith row of Sα(k); and fij represent the basis functions

we use to reconstruct the model. The form of these functions can be any of those
described in (2.1). In (3.1), wi(k) = [wi1(k), . . . , wiN (k)]>, and the noise ξi(k)
is assumed to be i.i.d. Gaussian distributed: ξi(k) ∼ N (0, σ2

i ), with E(ξi(p)) =

0, E(ξi(p)ξi(q)) = σ2
i δpq, with δpq =

{
1, p = q

0, p 6= q
. Now, let’s assume that time-

series measurements from a biochemical network are collected in a vector yi,
where yi =

(
xi(2) . . . xi(M + 1)

)>
. We state the problem as identifying the

system (2.2) based on these measurements. That is, our goal is to find all matrices
S1, . . . ,SNmodes

and the switching sequence α(k) from the measurements stored
in yi. Since the formulation in (3.1) is similar for all the state variables xi,
i = 1, . . . , N , in what follows we drop the subscript i to ease the notation.
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By defining the following block matrix and vectors

A ,



f1(x(1)) · fN (x(1))

. . . . . . . . .
f1(x(M)) · fN (x(M))




=
[
A1 . . . AN

]
∈ RM×MN ,

w ,
[
w1(1), . . . , w1(M) . . . wN (1), . . . , wN (M)

]>

=
[
w>1 . . . w>N

]> ∈ RMN ,

Ξ , [ξ(1), . . . , ξ(M)]
> ∈ RM .

(3.2)

we can reformulate the linear regression equations in (3.1) as

y = Aw +Ξ. (3.3)

There are two issues that needs to be considered at this stage. First, each
block wi = [w1(1), . . . , w1(M)] is associated only with certain basis function. The
solution w to (3.3) is therefore typically going to be block sparse, which is mainly
due to the potential introduction of non-relevant and/or non-independent basis
functions in A. Second, in the switched case, we have to penalise the number of
switches from t1 to tM and/or the number of modes Nmodes, which can be fixed
in advance or set equal to M . Clearly such a problem has an infinite number
of solutions, especially in the noisy setting. Therefore, we refine the problem
statement to identify the system (2.2) with the least number of non-zero blocks
in w and the least number of switches in the sequence α(k).

These are actually two different and competing criteria: if we want the least
number of switches, the number of non-zero parameters in w will grow, and vice
versa, a small number of non-zero parameters in w will result in many switches.

3.2 Minimising the Number of Switches

To limit the number of switches, we need to ensure that Sα(k) stays the same from
time k to time k + 1. Hence we need to add a condition maximising the sparsity
of Sα(k+1) − Sα(k) for all k. This leads to the following problem statement:

Problem 1. Given y and A and the block partitions formulated in (3.3), find
a w that can explain the data with the minimal number of switches and the
minimal number of non-zero blocks in w.

If we index the vector w appropriately, the problem of minimising the number
of switches can be formulated by enforcing Djwj sparse, where the matrix Dj

is defined as follows:

Dj ,



1 −1
. . . . . .

1 −1


 ∈ R(M−1)×M . (3.4)
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If we further define

Bj ,
[
I

ρDj

]
∈ R(2M−1)×M,,B ,




B1

. . .
BN


 ∈ RN(2M−1)×MN , (3.5)

Problem 1 can be formulated as follows

min
w

1

2
‖y −Aw‖22 + λ‖Bw‖`0 , (3.6)

where ρ in (3.5) is a trade-off parameter between the number of switches and
the number of non-zero parameters, while λ in (3.6) is known as a regularisation
parameter in penalised linear regression problems. Using the specially designed
matrix B defined in (3.5), we can penalise a) the number of switches that occur
and b) the number of non-zero element in every identified model.

For matrices B with the special form given in (3.5), algorithms minimising
the number of non-zero elements and the number of switches belong to the class
of so-called fused LASSO algorithms [6]. For general B matrices, the problem
defined in (3.6) would be solved using generalised LASSO algorithms [7].

Overall, instead of employing LASSO-type algorithms to obtain an approx-
imated solution, we are going to tackle the problem from a sparse Bayesian
learning perspective [3, 4] as this gives much sparser solutions.

4 Sparse Bayesian Learning

In order to estimate P(w|y), firstly the prior distribution over w should be speci-
fied. In problem (3.6), we not only want to minimise the number of basis functions
but also the number of switches. Therefore, sparsity promoting priors should be
specified for P(Bj,:wj), ∀j, where Bj,: is the jth row of B. These priors can be
chosen as super-Gaussian [8]. It means that for every parameter Bj,:wj , we de-
fine a hyper-parameter γj such that P(Bj,:wj) = maxγj>0N (Bj,:wj |0, γj)ϕ(γj).
In this case the priors P(Bw) can be computed as follows:

P(Bw) = max
γ>0

∏

j

N (Bj,:wj |0, γj)ϕ(γj). (4.1)

where γ is a vector of γj and ϕ(·) is a nonnegative function of the hyperparam-
eters, which can be given depending on a selection specific sparsity promoting
distribution, such as a Laplace distribution, a Student’s t distribution, etc. Note
that, if the parameter vector γ is known, we can estimate P(Bw|y;γ) instead
of computing P(Bw|y). Therefore, the problem should be recasted in terms of
finding the most appropriate hyperparameters of the priors: γ̂. A good way of se-
lecting γ̂ is to choose it as the minimiser of the sum of the misaligned probability
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mass, e.g.,

γ̂ = argmin
γ>0

∫
P(y|w) |P(Bw)− P(w;γ)| dw

= argmax
γ>0

∫
P(y|w)P(Bw;γ)dw.

(4.2)

The procedure in (4.2) is referred to as evidence/marginal likelihood maximisa-
tion [3, 4]. It means that the marginal likelihood can be maximised by selecting
the most probable hyperparameters able to explain the observed data. Defining
Γ as a diagonal matrix with diagonal entries γj , the parameters w and γ can be
estimated by solving the optimisation problem in Proposition 1:

Proposition 1. The optimisation problem in (4.2) is equivalent to the following
non-convex problem

min
γ>0,w

{ 1

σ2
‖y −Aw‖22 + w>B>Γ−1Bw

+ log |Γ|+ log |B>Γ−1B + σ−2A>A|+
N∑

j=1

p(γj)}
(4.3)

where Γ is a diagonal matrix with entries γ on the diagonal and p(·) = log(ϕ(·)).

Proof. The proof is similar to that derived in [4, 5]. Therefore, we omit it due
the space limitation.

We approach the solution to this problem by separating the objective function
into the following parts:

f(w,γ) =
1

σ2
‖y −Aw‖22 + w>B>Γ−1Bw

g(γ) = log |Γ|+ log |B>Γ−1B + σ−2A>A|+
N∑

j=1

p(γj).

Proposition 2. The function f(w,γ) is jointly convex in w and γ, while the
function g(γ) is concave.

Proof. It is easy to verify the first part of this proposition. A proof on concavity
of the sum of log-determinant functions in the second part for general matrices
B can be found in [5, Theorem 3.1 (3)].

Proposition 2 allows us to use Convex-Concave Programming [9] in order to
find a stationary point, which results in:

(
wk+1,γk+1

)
= argmin

w,γ>0
f(w,γ) +∇γ(g(γ

k))>γ (4.4)
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In order to make the algorithm more transparent we also separate the min-
imisation into separate minimisation programmes over w and γ: By defining
εk+1 , ∇γ(g(γ

k)), the optimal solution in (4.4) over γ can be computed an-
alytically as γj = Bj,:w/

√
εj , ∀j and for every fixed w. Now we only need to

minimise in (4.4) over w as follows:

wk+1 = argmin
w

1

2
‖Aw − y‖22 + σ2

∑

j

‖εkj ·Bj,:w‖1,

while the hyperparameters are updated as γk+1
j = Bj,:w

k+1/
√
εj , ∀j. To sum-

marise the algorithm, one can initialise γ0j at any positive real scalar. Some
additional insight can be obtained by initialising ε0j = 1, ∀j instead. In that
case, the first iteration becomes a linear regression problem with `1 penalty on
the parameters Bw:

w1 = argmin
w

1

2
‖Aw − y‖22 + σ2‖Bw‖`1 .

Then we update γ1j using γ1j = Bj,:w
1/
√
ε0j . Using this initialisation, we prov-

ably get results at least not worse than the generalised LASSO algorithm. Al-
gorithm 1 summarises this approach, which converges to a stationary point in
w and γ [9]. Algorithm 1 can be seen as a particular version of the reweighted
LASSO approach with a Bayesian update on the weights. The program (4.4) is

Algorithm 1 Switched Systems Identification Algorithm

1: Initialise ε0j = 1, ∀j = 1, . . . , N(2M − 1),
2: for k = 0, . . . , kmax do
3: Update the parameters as follows:

wk+1 = argmin
w

1

2
‖Aw − y‖22 + σ2

∑

j

‖εkj ·Bj,:w‖1

γk+1
j =

Bj,:w
k+1

√
εkj

εk+1
j = −Bj,:(B

>(Γk+1)−1B + ρkA>A)−1B>j,:

(γk+1
j )2

+
1

γk+1
j

4: if a stopping criterion is satisfied then
5: Break
6: end if
7: end for

convex, quadratic and uncostrained; however, the size of the problem can be ex-
tremely large. Two techniques to speed-up the solution can be adopted: pruning
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the parameter w space after each iteration as in [10], and/or using distributed
computation methods such as ADMM, e.g. [11]).

5 Results

In this section, we consider time-series data obtained from a chaotic Lorenz
Oscillator implemented in vitro using DNA computations [12]. From the associ-
ated biochemical reactions, a polynomial ODE can be derived using the law of
mass action. We artificially generate data using this oscillator model but change
certain parameters at certain time. This can be realised in vitro by changing
experiment conditions or enzyme concentrations. The Lorenz oscillator can be
described by the discretised differential equations

[
y1(k + 1)− y1(k)

δt
,
y2(k + 1)− y2(k)

δt
,
y3(k + 1)− y3(k)

δt

]

= [p1(k)(y2(k)− y1(k)), y1(k)(p2(k)− y2(k)), y1(k)y2(k)− k2(k)y3(k)] .

where we the fix sampling time to δt = 0.02 (arbitrary units).
Initially (“Mode 1”), the parameters are p1 = 10, p2 = 30, p3 = 8/3. From

k = 201 to k = 400 (“Mode 2”), the parameters are changed to p1 = 10, p2 =

30, p3 = 4. For the kinetics of y1 and y3, the nonlinear dynamics change after
switching from Mode 1 to Mode 2. For y2, the parameters do not switch. We
construct the basis functions in (3.1) as

(
y01(k)y

0
2(k)y

0
3(k), y

0
1(k)y

0
2(k)y

1
3(k), . . . , y

n1
1 yn2

2 (k)yn3
3 (k)

)
.

We index the parameter vector w(k) as [w000(k), w001(k), . . . , wn1n2n3(k)], choose
λ = 1 and ρ = 100 and set the initial condition to [y1(1), y2(1), y3(1)] =

[0.2444,−2.217, 2.314]. Finally, we set n1 = 1, n2 = 1 and n3 = 1. The true
and estimated parameters’ evolution over time are shown in Figure1.

6 Conclusion

In this paper we proposed an efficient way to solve the switched system identifi-
cation problem for biochemical reaction networks. For this purpose, an efficient
framework based on sparse Bayesian learning has been proposed to solve this
problem by specifying sparse priors on the number of parameters and the num-
ber of switches. Future work lies in the identifiability of such switching systems
and how to design proper excitation signals to guarantee identifiability of the
switching systems from output data.
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(a) True and estimated parameters for y1.
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True Parameters

 

 

50 100 150 200 250 300 350 400

1

2

3

4

5

6

7

Estimated Parameters

Time

 

 

50 100 150 200 250 300 350 400

1

2

3

4

5

6

7
−4

−3

−2

−1

0

1

−4

−3

−2

−1

0

1

(c) True and estimated parameters for y3.

Fig. 1: True (upper panel) and estimated (lower panel) parameters’ evolution over
time. The horizontal axis represents time, whereas the vertical axis represents
the estimated coefficients. From top to bottom, the index goes from 001 to 111.
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Abstract. This study introduces a new augmented Bayes filter model
for time-varying, context-dependent emission noise. The envisaged ap-
plication, robust state estimation for a robot, motivates the use of the
Relevance Vector Machine to model the emission noise, because it pro-
vides sparsity and fast inference capabilities. Besides the introduction of
this new model, this work also aims at comparing the final filter per-
formance when discriminative training is used instead of the prevalent
generative training. The theoretical foundations for training and running
inference over the model are proposed.

1 Introduction

Bayes filters (BF) have been widely applied to many areas. They are notably a
workhorse of robotics, where recursive filtering [6], a fast and simple inference
procedure, has provided the most common and reliable method for real-time
state estimation over the past decades. BF used for state estimation usually rely
on some optimistic assumptions for two main reasons: the real physical system
is actually too complex to be perfectly described through a tractable model,
and physical exactitude is neglected for the sake of computational efficiency.
As a consequence, filter models designed for state estimation usually rely on a
minimum system state representing the robot variables required for achieving
a specific task. Any unmodeled aspect of the system, among which the effects
of the current environment over the filter performance, are then encompassed
within additional noise terms.

In practice, when used for robot state estimation, Bayes filters require a
substantial tuning phase to provide acceptable performances. This is because
capturing all unspecified aspects of the system through the sole introduction of
noise often results in a trade-off between output optimality (accuracy of the state
estimate) and robustness (to the different unmodeled aspects). An illustration of
this problem, and the core motivation of this work, is the case of an autonomous
robot navigating through different environments, in which one has to deal with
a whole range of alterations in sensor readings, going from average (optimal)
observation noise to complete failure (unreliable data). This is especially true
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when sensor performances are strongly affected by the different environment
characteristics, such as luminosity, texture and materials of surroundings objects,
ground and obstacles...

The classical state-space model is defined by:

xt = f(xt−1) + γ

yt = g(xt) + ν
(1)

where xt is the latent state at time t with the associated observation yt, f and
g the transition and emission functions respectively, γ ∼ N (0, Σγ) the system
noise and ν ∼ N (0, Σν) the observation noise. f and g can either be linear
functions (linear dynamical system) or nonlinear (nonlinear dynamical system).
Most often, no fixed noise values Σν that would yield an optimal output for a
large variety of operating conditions (or environments) can be determined. Other
unmodeled effects producing the strongest measurement alterations are often
compensated with a rejection scheme, usually relying on a model self-consistency
check. In other words, designing a Bayes filter emission model consists in finding
the best distribution modeling the emission process for the nominal cases, and
reject all the data that does not fit this distribution [13]. One strong consequence
of this approach is that the system might converge to erroneous but model-
consistent state values [14, 12]. When such divergences are observed, additional
parameter tuning is required to improve global robustness, then detrimentally
affecting the state estimation performance.

This classical state-space model, whose graphical representation is shown in
Fig.1, is known as (time) homogeneous. It can be enhanced by making the model
parameters vary in time: the trade-off usually required when tuning the param-
eters is then no longer needed, and the resulting model can handle the whole
spectrum of alterations over measurements. As the research context motivating
this study concerns robust and adaptive perception for autonomous robots, this
work focuses on the emission distribution – even though the proposed approach
can be straightforwardly applied to the prediction distribution of model (1).

This paper aims at developing a model able to compensate for the assump-
tions made by describing a system through the simplified emission distribution
with simple Gaussian noiseΣν – while maintaining high computational efficiency.
It results in an enhanced Kalman filter capable of dealing with both moderate
alterations and outliers, without requiring the implementation of rejection rules.
This is done by training an additional model for the emission noise, which relies
on contextual information input. One particularly appealing consequence of this
approach lies in the introduction of a second order knowledge over measurements
reliability, where basic rejection schemes rely on some knowledge about the data
properties. The proposed approach is consequently less likely to diverge.

Discriminative training being known to help in compensating some of the
mis-modeled aspects of a system [1], we also aim at analyzing the impact of a
discriminative learning method versus a generative one over the performance of
the resulting filter.

62



Fig. 1. Graphical model of a Bayes filter with homogeneous emission distributions.

The next section depicts the model basic principle. Sections 3 and 4 respec-
tively describe generative and discriminative training of the model. Inference
methods are then provided in section 5, and a discussion concludes the paper.

2 Heterogeneous BF with sparse Bayesian models

2.1 Background

Unless the state of simple models such as (1) encompasses all the exogenous
phenomena likely to alter the system behavior, BF are by nature unable to
model time varying emission and prediction processes. Recently, extensions have
been proposed in order to compensate this unability. Nonparametric models
such as Gaussian Processes (GP) have been integrated for modeling transition
and emission distributions [3], and extended to fully state-dependent models
in [9], through the introduction of a heteroscedastic observation noise. If non-
parametric models improve the filter robustness compared to parametric func-
tions, they are usually designed as state-dependent models, and as such are
unable to handle contextual influence over the measurement process. For the
heteroscedastic observation model proposed in [9], the presence of outliers in the
training set is then critical: based on the sole state information, the system is
unable to discern the contribution of the noise free model (g(xt) in (1)) from
the noise model (which is then written ν(xt)) within measurements. An other
disadvantage of these approaches is that one has to turn to more complex sparse
GP techniques when using a large training set if the system is intended to be
used in real time.

From a different perspective, optimizing the parameters of a BF has always
been mostly considered as a tuning task, achieved with the intuitive goal of pro-
viding the most accurate state estimation. This allows to take into consideration
some mis-modeled aspects of the system, even if they are never explicitly de-
scribed, neither understood. Surprisingly, methods for learning the parameters
of a BF appeared quite recently in the literature, and mostly rely on maximum
likelihood. Since BF are generative models, this implies that the parameters are
not determined with respect to the system ultimate performance, but so as to
get the best model for the underlying prediction and emission processes. Con-
versely, discriminative training is similar to manual tuning, in the sense that
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the parameters are optimized with respect to filter performance. But this latter
training approach remains uncommon, although it proved to outperform man-
ual tuning and maximum likelihood as well [1]. To our knowledge, combining
an augmented model with discriminative training remains untreated, while both
approaches serve a similar purpose, i.e compensating for unmodeled aspects of
the real system.

2.2 Heterogeneous Bayes filters with sparse Bayesian model

To overcome BF unability to deal with context influence, an augmented model
is introduced, whose particularity is to explicit the context repercussion over the
measurement process. It relies on an additional observation variable ct relating
to the perception context. As suggested in previous work [12, 11], this additional
observation can consist in the joint set – or subset – of sensor measurement
values yt possibly extended with any relevant contextual information it (any
other sensor measurement, robot internal data, or any information that might
influence the measurement emission process). It is assumed that this joint set of
measurements defines a proper representation space for the contextual influence
over measurement noise, i.e there exists a mapping from the context input space
to the observation noise level.

To further avoid ambiguities in the contribution of two distinct models g and
ν in the measurement process, we assume that the noise free component g of the
emission model is known and homogeneous in time, since it can generally be ob-
tained directly through physical considerations about the nominal measurement
generation process. This results in an emission model of the form:

yt = g(xt) + ν(ct)

Reminding the goal of this model is to enhance a Kalman filter, ν(ct) is then a
zero mean Gaussian noise distribution with context-dependent variance:

ν(ct) ∼ N
(
0, r(ct)

)

To avoid making any assumption over the functional form for the variance model,
and keep computational efficiency, r(ct) is modeled with the Relevance Vector
Machine (RVM) framework [15], naturally providing sparsity thanks to the au-
tomatic relevance determination mechanism. For a given training set of T ob-
servations {ci}Ti=1, we define r(ct) = exp(zt) to ensure variance positivity where
zt is given by

zt =

T∑

i=1

wiK(ct, ci) + w0 + ε (2)

with w0 a bias parameter, K the chosen kernel function, and ε ∼ N (0, σ2
ε ). To

foster sparsification, a zero-mean Gaussian prior is placed over the weight vector
w = (w0, w1, .., wN )T :

p(w|α) =

N∏

i=0

N (wi|0, α−1
i )
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Fig. 2. Bayes Filter with heterogeneous emission noise.

where we define uniform hyperparameters priors over α = (α0, α1, ..., αN )T .
So far, the model has been depicted for a one-dimensional observation space.

Real applications however require to consider the multi-dimensional case. For an
observation variable yt ∈ RD, D distinct RVM models are then used to model
each component of the noise covariance matrix ν(ct). For clarity, the next sec-
tions only consider the one-dimensional case, the extension to higher dimensions
being straightforward. The resulting graphical model of this augmented model
is depicted Fig.2.

3 Generative training

Bayes filter parameter optimization is usually done by minimizing the likelihood
of the training set [4, 2], considering the latent state variable remains unobserved.
In this work, we assume that the training set also contains ground truth data,
i.e accurate values of the state variables x = {x1, ..., xT }. The issue of training
the emission model then turns to be analogous to the regression task, and more
specifically to the heteroscedastic regression task with nonparametric models [5,
7, 10, 8, 9]. Note however that the training task is here a bit simpler since the
observation function g is fixed and only the model ν(ct) has to be determined. If
sampling and variational approximation can be also used, the chosen approach
relies on hard-assignment Expectation Maximization (EM) as suggested in [7].
By using hard-assignment EM we iteratively estimate the RVM parameters and
predicted log noise level z at original inputs C = {ci}Ti=1. Thanks to this ap-
proximation, we are able to make direct use of classical RVM optimization and
prediction equations, providing in this context the fastest solution for a real time
application.

Following Kersting et al. approach [7], the hard E-step consists in empirical
estimation of the noise variance. Based on real observations y = {y1, ..., yT } and
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samples ykt provided by the current observation model (using the parameters α
and σε found after last EM iteration), the set of values yt and {ykt }Kk=1 are seen
as independent noisy observations of g(xt). Empirical estimation of the noise
variance at xt is then provided by the mean

vart =
1

2.K

K∑

k=1

(yt − ykt )2

In the subsequent M-step the RVM model is trained with the new training set
D = {ct, log(vart)}Tt=1 with a classical optimization procedure [15].

In other words, the optimization process considers the noise variance as the
hidden variable of the model, and iteratively optimize the parameters of the
RVM model based on a hard assignment of the estimated noise. This method
requires to use a substantial number of samples to empirically estimate the noise
variance and, as any hard-assignment EM, is prone to oscillating, requiring to
monitor the likelihood of the model over the training set after each algorithm
iteration. It however brings an important advantage, since the optimized model,
in association with the last noise variance estimation, can be readily used for
prediction using classical RVM equations.

4 Discriminative training

The previous learning approach aims at minimizing a loss function corresponding
to the emission likelihood. In other words the optimization step finds model
parameters explaining at best the measurement generation process. As suggested
in [1], it is however better to optimize the parameters with respect to the ultimate
system performance, i.e the accuracy of filter estimates. Training the model then
consists in finding αmax and σεmax such that:

〈αmax, σεmax〉 = arg max
α,σε

T∑

t=1

log(p(xt|y1:t))

where p(xt|y1:t) is provided by Kalman equations. Considering f and g are linear
functions corresponding to the matrices F and G respectively (classical Kalman
filter case), we have:

p(xt|y1:t) = N (xt|µt, σt)
with

µt = Fµt−1 +Kt(yt −GFµt−1)

σt = (I −KtG)Pt−1

Pt−1 = Fσt−1F
t +Σγ

Kt = Pt−1G
t(GPt−1G

t +Σν(ct))
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Since this distribution requires the evaluation of two latent variables: the
log noise level and the RVM weight parameter, a procedure similar to Type II
maximum likelihood is employed. zt and w are then marginalized out and we
now seek for parameters αmax and σεmax maximizing:

Ldiscr =

T∑

t=1

log
(∫ ∫

p(xt|y1:t, zt)p(zt|ct,w, σε)p(w|α) dw dzt

)

Since p(zt|ct,w, σε) and p(w|α) are both Gaussian, the integral with respect to
w is readily evaluated to give:

Ldiscr =

T∑

t=1

log
(∫

p(xt|y1:t, zt)N (zt|0, Dt)dzt

)

where Dt = σε+KTα−1K, with K the vector of kernel functions such that Ki =
K(ct, ci) as defined in (2), and A = diag(α). The last equation is analytically
intractable and is then approximated with integration by substitution and Gauss-
Hermite quadrature.

αmax and σεmax are subsequently found by conjugate gradient ascent over
Ldiscr. Note that classical optimization of the RVM model requires the compu-
tation of a design matrix containing all kernel elements evaluated at all original
locations {ci}Ti=1. Here, the optimization is done separately for each kernel vector
evaluated at ci, through their influence over ultimate filter performance. This
different form of training (by comparison to the one in [7]) then requires to foster
sparsity by thresholding of the αi values during the optimization process.

5 Inference

5.1 Generative training case

For the classical model of Fig.1, filtering consists in evaluating normalized marginal
distributions α̂(xt) = p(xt|y1, .., yt) with the recursion equation of the form:

ηtα̂(xt) = p(yt|xt)
∫
α̂(xt−1)p(xt|xt−1)dxt−1 (3)

where ηt = p(yt|y1, ..., yt−1) the scaling factor and p(yt|xt) and p(xt|xt−1) the
emission and prediction distribution considered as Gaussian for kalman filtering.
Since in the new model the noise level is considered as an additional latent
variable, the emission distribution required for the evaluation of (3) is now given
by:

p(yt|xt, ct) =

∫
N
(
yt|g(xt), exp(zt)

)
p(zt|ct, C, z, α, σε)dzt (4)

where z is the predicted log noise level at original inputs {ci}Ti=1, and p(zt|ct, C, z, α, σε)
the predictive distribution given by:

p(zt|ct, C, z, α, σε) =

∫
p(zt|ct,w, σε)p(w|C, z, α, σε)dw (5)
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This familiar predictive distribution [15] is also Gaussian. The evaluation of the
integral (4) is hence analytically intractable, and requires approximation. The
fastest approach is the most likely approximation, where we replace the inte-
gral by N

(
yt|g(xt), exp(z

∗
t )
)

with z∗t = arg maxzt p(zt|ct, C, z, α, σε). Note that
this approximation allows p(yt|xt, ct) to be a Gaussian distribution, a necessary
condition for using Kalman recursive equations.

5.2 Discriminative training case

Since discriminative training did not involve evaluation of the posterior distri-
bution of the noise level z, we can not make straightforward use of the RVM
prediction equation. We then replace equation (5) by:

p(zt|ct, C, α, σε) =

∫ ∫
p(zt|ct,w, σε)p(w|C, z, α, σε)p(z|C,α, σε)dwdz (6)

We turn to MCMC sampling in order to evaluate at first the posterior p(w|C,α, σε)
reminding that

p(w|C,α, σε) =

∫
p(w|C, z, α, σε)p(z|C,α, σε)dz

and as described in [15],

p(w|C, z, α, σε) = N (w|m,Σ)

p(z|C,α, σε) = N (z|0, E)

where m = σεΣΦ
T z, Σ = (A+σεΦ

TΦ)−1 and E = σ−1
ε I +ΦA−1ΦT , with Φ the

design matrix. For computational efficiency, evaluation of the predictive distribu-
tion over the noise level for a new input ct is then done by replacing the integral
over w in (6) by the evaluation of p(zt|ct,w, σε) at the point estimate value of
w provided by the sampling procedure, which is done offline. The remaining of
the inference is then similar to the one depicted in the generative training case.

6 Discussion

The aim of this work is to define a new Bayes filter model able to encompass
a variety of contexts, and to analyse different training approaches and their ex-
pected consequences over the system performance. Its specificities rely in the
introduction of an additional observation used for context identification, and in
the use of a sparse RVM model for context-dependent observation noise predic-
tion. The theoretical foundations have been presented and system performances
are currently being investigated. Note that the idea of introducing an additional
context variable has been tested in our previous work [12, 11] and proved to be
relevant for the simple task of context-dependent sensor selection (equivalent to
rejection). However experiments conducted so far concerned the simple task of
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altitude estimation for an UAV, and the approach has still to be tested on more
complex scenarios, involving numerous sensors and a broad range of contexts.

While augmenting Bayes filters with time-varying noise model plays a cen-
tral role in trying to compensate the optimistic assumptions usually made by
the classical model, the training method might also have major consequences
over the system performance. As such, discriminative training seems promising
in that it requires to run the filter during optimization while generative train-
ing focuses on the underlying emission and prediction processes. Discriminative
training nevertheless brings some particular issues, since at first, it does not al-
low to use classical training (and sparsification) method for the RVM model, but
also because the optimization process of Ldiscr is much more complex. Indeed,
each term of the discriminative loss function is strongly related to the preceding
one as a direct consequence of the recursive equations used for state estimation.
Classical RVM models already require the optimization of a nonconvex func-
tion, and we still need to study the consequences of the additional complexity
introduced along with this specific loss function. Besides this particular issue,
the use of discriminative training also ends up with some additional approxima-
tions during inference. Experiments will provide a better insight on how expected
benefits and inherent drawbacks of the discriminative method impact the system
performance, by comparison to the much simpler generative approach.
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Abstract. In this paper we propose a framework for tracking and automatically
connecting news articles to Twitter conversations as captured by Twitter hash-
tags. For example, such a system could alert journalists about news that get a lot
of Twitter reactions, so they can investigate those conversations for new develop-
ments in the story, promote their article to a set of interested consumers, or dis-
cover general sentiment towards the story. Mapping articles to hashtags is never-
theless challenging, due to different language styles of articles versus tweets, the
streaming aspect, and user behavior when marking tweet-terms as hashtags. We
track the IrishTimes RSS-feed and a focused Twitter stream over a two months
period, and present a system that assigns hashtags to each article, based on its
Twitter echo. We propose a machine learning approach for classifying article-
hashtag pairs. Our empirical study shows that our system delivers high precision
and recall for this task.

Keywords: news tracking, social media, Twitter, hashtag recommendation

1 Introduction

Since its start in 2006, Twitter has established itself as an alternative media source. In-
creasingly, Twitter conversations and calls to action that mobilize masses have dedicated
hashtags, as showcased by recent world events, e.g., #ArabSpring, #Syria, #freethe7.
Twitter hashtags thus lead to the formation of ad hoc publics around specific themes
and topics without the need for the users to be otherwise explicitly connected [2].

Hashtags can convey information about the community that uses them or the sen-
timent of the messages they group. For an outsider, or even for an insider that doesn’t
continuously track the massive Twitter activity, it is close to impossible to stay in the
know when it comes to the right hashtags or users to follow, for current and develop-
ing news stories. Nevertheless for journalists in particular, it is vital to get to the right
hashtags quickly, in order to be able to follow new developments on topics of interest.
Data analytics techniques can provide tools that link news stories to the relevant Twitter
conversations.

Automatically mapping news articles to appropriate hashtags (where a hashtag is
seen as a group of tweets forming a conversation around it) can be very challenging.
This is due to different language styles used in the two types of data (e.g., clean, long
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Table 1. A news article and initially retrieved hashtags (before learning algorithm is applied).

News Article Retrieved Hashtags Hashtag Category
Headline: FG fears day of reckoning over Enda
Kennys Seanad gamble
Sub-headline: There is deep concern within the
Fine Gael ranks that its populist referendum
campaign misfired so badly

#seanad, #enda, #ire-
landsaysno

Relevant (Specific)

#ireland, #rtept, #news Relevant (General)
#caughtrotten, #whip Relevant (Abusive)
#mentalhealth Irrelevant

articles versus messy, short tweets), the fast paced streaming aspect of both news and
tweets (matching two streams moving at different speeds), as well as user behaviour
when coining certain tweet-terms as hashtags. To showcase the third issue, in Table 1
we present an example news article and the categories we identified for the hashtags
retrieved for it, in an initial pre-processing stage. The article is about Irish politics: the
2013 referendum to adopt a unicameral parliamentary system by abolishing one of the
current two houses of parliament, the Seanad. The hashtags retrieved for this article in
an initial pre-processing step, range from highly specific and relevant, to general but
still relevant, to abusive but potentially relevant, to irrelevant. We can see from this
example that an approach that can accurately filter irrelevant hashtags and rank relevant
hashtags can deliver value by connecting to the right Twitter conversations.

In this paper we propose a large-scale, real-time framework for connecting news
articles from mainstream media to their echo on the Twitter stream. We discuss the
data collection process for continuously gathering, processing and connecting a stream
of news articles and a focused Twitter stream relevant to the tracked news stories. We
analyze relevant features and propose a machine learning approach for ranking hashtags
for a given news story. Our experiments show that our system can achieve high precision
and recall on this task. The rest of the paper is organized as follows. Section 2 discusses
related work and our contributions. In Section 3 we explain the data collection process,
while in Section 4 we describe the process of modeling hashtag ranking as a learning
problem. In Section 5 we discuss our results and Section 6 concludes with directions
for future work.

2 Related Work

Recent years have seen an explosion of research work analyzing social media (e.g.,
most prominently the micro-blog Twitter) and the connection between traditional media
and this new form of reporting. Among the diverse investigations of Twitter data, two
categories are most relevant to this paper.
Hashtag Recommendation. Tag recommendation for tagging systems such as Last.fm
and Delicious has been studied in a number of works such as [7] that applies topic
modelling using Latent Dirichlet Allocation (LDA) to the problem. Focusing in par-
ticular on hashtag retrieval over a Twitter corpus, in [5], language modelling is used to
find hashtags given a keyword query. A model of each hashtag is learned from the set of
tweets that contain the tag as a multinomial distribution over terms. Hashtags are ranked
according to the Kullback Leibler divergence of their corresponding model to the query
model. In [4] the issue of recommending hashtags to untagged tweets is addressed. An
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LDA topic model is used to categorise tweets into topics and a translation probability
maps topics to hashtags. The method is modified in [3] by replacing standard LDA with
the topic model of [14].
News and Tweets. Work that investigates the connection between news and Twitter in-
cludes [11]. Given a set of tweets that specifically mention the URL of a given article,
this work focuses on a method to filter this set into a subset of most interesting tweets.
The authors use four indicators of interestingness, namely informativeness, opinionat-
edness, popularity and authority to filter the initial set. TweetMogaz [8], a system for
microblog search and filtering, aims to find tweets relevant to regional news. It relies
on a curated list of key players from which to collect an initial set of relevant tweets.
The initial set is augmented, by firstly extracting a set of keywords from news sites
and searching for tweets containing these keywords. The keyword tweets are filtered by
training a classifier using the key player tweets as positive examples and a set of random
tweets as negative examples. Other works investigated automatic news detection from
tweets [12], recommending news articles using tweets [9], forecasting the popularity
of news using Twitter [1], or enhancing news articles with information extracted from
Twitter, such as comment tweets [6].

Our work differs from the above research in a number of ways. In particular, we
address hashtag recommendation in a streaming context, with a requirement that the
model be updated on a daily basis. Rather than applying topic modeling on a large,
static Twitter corpus, containing potentially many diverse topics, we attempt to filter ir-
relevant tweets directly by using the news articles to be hashtagged in order to focus the
data collection from the Twitter stream. Nevertheless, unlike other work on connecting
articles and microblogs, we avoid seeding our data collection with a curated user group
or with tweets that specifically mention the articles in question (via the URL). As dis-
cussed later, our automatic-keyword Twitter stream allows for a wide set of tweets to
be gathered, while ensuring that the collection contains relevant tweets with high prob-
ability. Our search strategy provides sufficient breadth to allow high recall in gathering
relevant hashtags, while avoiding being drowned in a vast sea of Twitter noise. We al-
ternate this high recall with a high precision oriented step, by using a learning approach
to rank the retrieved hashtags for each article.
Our contributions are as follows: (1) we propose a focussed Twitter data collection
strategy based on automatic keyword extraction from news articles; (2) we formulate
a large-scale, real-time learning process for assigning hashtags to news articles; (3) we
deliver a system for matching a daily news stream and a relevant Twitter conversation
stream [10].

3 Data Collection

We collect data from two sources between October 7, 2013 and November 30, 2013,
RSS Feeds of news articles and a focused Twitter stream.
News Articles from RSS Feeds. We gathered the news articles streamed on the Irish
Times RSS feeds, by polling the RSS feeds every 5 minutes, yielding a total of 4,862
unique articles, around 170 articles per day. The Irish Times is an Irish mainstream
media outlet, that covers Irish news and high impact world news. Each article has a
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Table 2. Processed keyword set by permutation.

Original keywords/phrases Final keywords/phrases
enda kenny enda kenny

fine gael fine gael
fg fg fears

fears fg seanad
seanad fears seanad

headline, a one paragraph description that summarises the article (sub-headline), and
the article body.

We extract representative keywords for each downloaded article, by parsing the
headline and sub-headline, part-of-speech tagging this text, and extracting nouns and
named entities using shallow parsing techniques and heuristics (e.g., we extract Aer
Lingus, Enda Kenny, etc.). We do not use the article-body for keyword extraction, since
it poses risks of topic drift and noise. For example, for the news article in Table 1 we
extract the keywords enda kenny, fine gael, fg, fears, seanad.

Focused Twitter Stream. Since we are interested in continuously streaming news and
corresponding tweets, we use the Twitter Streaming API1, which can be employed with
either keywords (words or phrases), geographical boundary boxes or user ID. We gather
Twitter streaming data by using a dynamic2 set of keywords extracted from the stream
of RSS news articles every 30 mins each day. Each article’s keywords are streamed for
24 hours.

Additionally, we noticed that in order to get relevant tweets, it helps if we constrain
each tweet returned by the Twitter API to contain at least two article keywords. We
achieve this by splitting our original keyword set, into individual keywords, and creating
all possible permutation pairs as our final keyword set, with the constraint that we freeze
named entities. For example, for the article in Table 1, we process the keyword set enda
kenny, fine gael, fg, fears, seanad by keeping the named entities and permuting the
single keywords to form pairs, as shown in Table 2. We apply this process every 30
minutes to all the RSS articles downloaded up to that point in time, pool the keywords
together, and re-connect with the Streaming API using the updated keyword list.

Through this process we aim to retrieve a large set of relevant tweets while not being
restricted to a set of manually curated user lists, locations or keywords. The problem of
retrieving relevant tweets to a set of news has been pointed out in recent research [6]
with ad-hoc retrieval techniques achieving low Recall (0.5). Prior work relies mostly on
tweets where the url of the article is explicitly provided, therefore obtaining a clean but
potentially small set of tweets. Our initial tweet-retrieval process gathers a large set of
potentially relevant tweets (23.3 million unique tweets), which we carefully filter in the
following machine learning process.

1 https://dev.twitter.com/docs/streaming-apis
2 Dynamic refers to the list of extracted keywords being updated every 30 mins with the new

keywords of incoming articles
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4 Learning Algorithm for Scoring Hashtags

In this section we discuss the process of modelling hashtag selection as a learning prob-
lem. We parse the stream of news articles and the Twitter stream in a 24 hours timewin-
dow, in order to extract and rank hashtags for each news article. For tweet-processing,
we remove stop words, punctuation, URLs and user names, and apply stemming to the
remaining terms. For each day, and each news article, we separate the tweets of the cor-
responding Twitter stream per article, based on a shallow matching of tweet keywords
and article-keywords (as extracted for the Streaming API and showcased in Table 2).
This results in a local tweet-bag per article, that can be analyzed for extracting hash-
tags and hashtag information, e.g., frequency, tf.idf profile describing the hashtag as
reflected in its tweet-bag. Next, we form article-hashtag pairs, and compute features of
each pair useful for discriminating whether a hashtag is relevant to a given article.
Features. We extract four features for each article-hashtag pair: two features that char-
acterize the local hashtag profile (based on tweets in the article-tweet bag), while the
other two characterize the global hashtag profile (based on tweets in the entire Twit-
ter stream that are retrieved till that time point), useful for describing specific versus
general hashtags.

One of the first features we select is the local cosine similarity between the tf.idf
profile of the article and the local tf.idf profile of hashtag (as extracted from the tweets
mentioning that hashtag in the article tweet-bag, by considering tweets as an articles
and calculate tf.idf weight of them). To avoid noise in the article tf.idf profile, rather
than selecting terms from the full article-body, we only select them from the headline
and sub-headline, but compute their tf.idf weight using the entire article (stop words
removed, stemming). Additionally, we extract the local frequency of the hashtag (i.e.,
the number of tweets in the article tweet-bag, mentioning that hashtag). The hashtag
frequency captures whether a hashtag is actively used.

We compute the global cosine similairy between the local and the global hashtag
tf.idf profile (as extracted from tweets in the entire historical Twitter stream3, men-
tioning that hashtag), to asses how much does the global hashtag profile diverge from
the local profile. Note that globally, the same hashtag may refer to different events, or
a hashtag may be preferred over a time window to refer to a certain event, and then
slowly discarded or outweighed by other hashtags. Therefore, using local and global
features for each hashtag, addresses the issue of time-of-use and scope of a hashtag. we
also extract the global frequency of the hashtag (i.e., the number of tweets in the entire
Twitter stream, mentioning that hashtag).

For each article-hashtag pair, we now have four features describing how relevant a
hashtag may be for a given article. We normalize all four features to the [0, 1] interval.
Next, we discuss how to use these features and a set of manually labeled article-hashtag
pairs for learning to identify relevant hashtags.
Labeled Data. In order to build a classification algorithm for recognizing relevant hash-
tags, we need labeled article-hashtag pairs. We selected two days at random from the
two month dataset, October 23, and November 23, 2013, extracted all the article hash-
tag pairs and their features as described above, and asked two annotators to manually

3 Historical refers to the time the article was published
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label each pair. We asked the annotators to decide which of the three scenarios applies
to each pair: (1) a hashtag is specific and relevant to the topic of the news article, (2)
general and relevant, or (3) irrelevant. For abusive hashtags, the annotators were ad-
vised to decide which of the three scenarios the hashtag belongs to depending on the
local context. For the purpose of our experiments, we merged the first two classes into
simply relevant (a positive example in binary classification) or irrelevant (negative ex-
ample). The inter-annotator agreement was 80%. We used the subset of examples where
both annotators agreed for training/testing a classification algorithm.

Besides of manually labeled data, we also gathered tweets containing both the Irish
Times article’s URL and hashtags. These tweets naturally form Article-User Hashtags
pairs and can be used as a form of ground truth, by assuming all user assigned hashtags
are relevant to the article.
Classification Algorithm We train and test our approach by employing a series of Weka
[13] classification algorithms using default settings, including Logistic, kNN, Decision
Tree, Multilayer Perceptron etc. The algorithm only sees the examples as described by
the four features, and can learn thresholding strategies on the provided features. For
example, to classify a hashtag as relevant for a given article, a classification algorithm
may learn (from the training set) that the cosine feature should be higher than 0.5 and
the hashtag frequency should be close to 1. Additionally, most classifiers provide a
score describing the likelihood that a hashtag is relevant to the article. We use this
classification score to rank hashtags for each article.

5 Evaluation

In order to evaluate our overall strategy for retrieving, learning, and ranking hashtags,
we evaluate classifiers using three different settings: Small, Medium and Large. The
evaluation settings and results are shown in Table 3.

5.1 Results: Small Experiment

For the small experimental setting, we use the manual labelling of article-hashtag pairs
for two random days: October 23, 2013 (874 examples) for training, and November 23,
2013 (1,122 examples), for testing.
Baselines. We first evaluate two simple baseline techniques. On the test set (November
23, 2013), we select the top-3 hashtags per article (257 pairs out of 1,122), using the
highest local hashtag frequency and the highest local cosine similarity. We evaluate the
precision of these two baseline. Since we only take the top-3, recall is not applicable in
this case.
Learning Approach. We now evaluate the classifier’s ability to retrieve all the hashtags
deemed relevant by our annotators as well as its ability to rank them before the irrel-
evant ones. We experimented with a series of Weka classifiers, with default parameter
settings. MultilayerPerceptron, Logistic (regularised logistic regression) and Kstar (K-
nearest neighbours with entropy-based-distance) delivered the best results, as shown in
Table 3. We note that all three classifiers have high precision (0.85), recall (0.80) and
AUC (0.92), showing that the classifier ranks relevant hashtags before irrelevant ones.
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Table 3. The evaluation results of Small, Medium and Large experiment settings.

Settings
Training Set Testing Set

Results
Baseline Learning Approach

Dataset Size Dataset Size
Most
Frequent
Top3

Highest
Cosine
Top3

Multilayer
Perceptron Logistic Kstar

Small Oct 23 847 Nov23 1122

Accuracy - - 84.6% 84.4% 83.9%
Precision 0.548 0.634 0.850 0.876 0.861

Recall - - 0.807 0.770 0.774
F1 - - 0.846 0.844 0.839

AUC - - 0.921 0.924 0.911

Medium
Oct 23 847 Article-

User
Hashtags

1147 Recall 0.503 0.644
0.781 0.756 0.704

Nov 23 1122 - - 0.792 0.808 0.787
Oct 23 &
Nov 23

1996 0.845 0.797 0.776

Large
Oct 23 &
Nov23 &
Article-

User
Hashtags

3143
Randomly
Selected
Article-
Hashtag

Pairs

1029
Precision - - - 0.869 -

Precision@1 - - -
0.900
([0.871, 0.929],
p < 2.2e− 16)

-

NDCG@3 - - -
0.877
([0.850, 0.904],
p < 2.2e− 16)

-

The AUC is particularly important, since ultimately it is useful to rank the hashtags of
each document, from most relevant to least relevant. Additionally, the Logistic classifier
is a linear model that can be easily interpreted, scales to large data and its classification
scores are true probabilities. The Logistic model deemed all four features as important
(non-zero weights), with the local cosine feature getting the highest weight, followed
by the frequency based features, and ending with the global cosine.

5.2 Results: Medium Experiment

In this setting, we use Article-User Hashtags data, which is gathered from tweets con-
taining both the Irish Times articles’ URL and hashtags and can be used as a form of
ground truth, by assuming all user assigned hashtags are relevant to the article. The arti-
cles with user assigned hashtags are a subset of the total streaming articles set. Since we
assume all the test examples are relevant (belongs to the positive class), in this setting
the Accuracy is the same as Recall, and Precision is 1 by default.
Baselines. We still employ the two baseline techniques: On the test set (Article-User-
Hashtags), we select the top-3 hashtags per article (257 pairs out of 1,122), using the
highest local hashtag frequency and the highest local cosine similarity. We evaluate the
recall of these two baseline.
Learning Approach. As training data we analyze three settings, October 23, 2013,
November 23, or both days together as training, and Article-User-Hashtag pairs as test
(1,147 test examples). Note that we assume that all the user-assigned hashtags are rele-
vant, which may not necessarily be the case, since sometimes users also assign spurious
hashtags, e.g., #annoying #omg. Our algorithm may consider such hashtags as irrele-
vant.
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Table 3 shows Recall over all article-user-hashtags retrieved by our learning algo-
rithm as being relevant (classification score above 0.5). We note that when we increase
the amount of training data, by combining the October and November examples, the
accuracy of MultilayerPerceptron stands at 84.5%, a similar value to that of the small
setting experiment.

5.3 Results: Large Experiment

In this setting, we use the labeled examples of October 23, November 23, and the
Article-User Hashtags data as training data, and around 1000 randomly selected article-
hashtag pairs extracted from the RSS and Twitter streams (no labels) as testing data.
Baselines. No baselines are employed in this setting due to the expensive cost of human
evaluation.
Learning Approach. Due to cost of manual evaluation, we only use the Logistic clas-
sifier in this setting, for the reason that it performs well in the previous two settings, and
it runs in linear time, so the scalability would not be an issue.

We apply the trained Logistic classifier to all the article-hashtag pairs. We randomly
select 422 articles that get at least one relevant hashtag (based on classification score
above 0.5), and manually asses the relevant article-hashtag pairs (1,029 pairs), using 0,
1 and 2 relevancy scores. As shown in Table 3, we evaluate both the filtering quality,
i.e., the classification across all article-hashtag pairs (to asses the Precision over the
pairs classified as relevant), as well as the hashtag ranking quality per article, using
information retrieval metrics. For the article oriented metrics, we use Precision@1 and
NDCG@3 and average them across all articles.

We note that the precision for the filtering step (binary classification into rele-
vant/irrelevant) is fairly high (Precision 0.86), and similar to what we have seen in
the previous experiments. When we evaluate the quality of ranking of hashtags for each
article, we see a similar result: the Precision@1 is 0.9, while the NDCG@3 which pe-
nalizes relevant hashtags ranked at low ranks, is 0.87.

5.4 Discussion

In order to make the whole methodology more explicit, in Table 4 we show some exam-
ple articles from our annotated sample of the Large setting, their extracted keywords,
their (up to top-3) ranked hashtags, together with the features extracted for the corre-
sponding pair, the classifier score and the annotator relevance score. We observe that for
local as well as international news (first 3 articles), the hashtags assigned and ranked by
classifier score are relevant and quite specific (e.g., #ecb, #walshwhiskeydistillery).

We found three main reasons why an article does not get any (relevant) hashtag:
the article-keyword extraction process is faulty (due to part-of-speech tagging errors or
due to the fact that the extracted keywords are too generic); there is no discussion on
Twitter about that particular news story; the tweets relevant to an article do not contain
any hashtags. The aspect of assigning noisy or irrelevant hashtags can be mitigated to
some extent by tuning the classifier threshold (here we used the default classification
score of 0.5). Additionally, the four features describing each article-hashtag pair could
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Table 4. Example results from our two-month annotated sample.

Article Headline Article Keywords Hashtag LFr LCo GFr GCo ClassifScor RelScor

Tech titans in town for Dublin
Web Summit

dublin, dubstarts,
summit, tech, web

#websummit 1.00 0.35 0.58 0.82 0.92 2
#tech 0.23 0.45 0.70 0.37 0.89 1
#web 0.42 0.41 0.40 0.52 0.82 2

Whiskey distillery to create 55
jobs for Co Carlow

carlow, co, walsh,
distillery, whiskey

#whiskey 1.00 0.73 0.16 0.56 0.99 2
#carlow 0.90 0.64 0.16 0.53 0.99 2
#walshwhiskey-
distillery

0.66 0.61 0 1 0.97 2

ECB’s Draghi moves to ease
fears on interest rates

banks, draghi, ecb
#ecb 1.00 0.50 0.39 0.42 0.97 2
#draghi 0.54 0.58 0.19 0.69 0.96 2
#news 0.00 0.46 0.89 0.29 0.90 1

Climate change watchdog must
be robust and independent, says
report

advisory, climate,
expert, fiscal

#delleir 1.00 0.27 0.00 1.00 0.60 0
#job 0.00 0.30 0.80 0.35 0.53 0
#delcfe 0.89 0.26 0.00 1.00 0.51 0

Europe bank payouts capped as
capital bar keeps rising

capital, europe #europe 0.79 0.35 0.55 0.02 0.84 1
#travel 0.66 0.27 0.68 0.38 0.72 0

be enhanced, e.g., using user authority to re-weight tweets, filtering spammy hashtags
(e.g., #ff, #followback). Regarding the lack of hashtags in the tweet-bag of an article, in
such cases we could employ recent techniques for extracting informative tweets [11],
or adapt our approach for the problem of assigning Twitter users (rather than hashtags)
relevant to a given news article. The manual annotation for the learning approach is
also potentially noisy, since at times it is quite difficult to decide whether a hashtag is
relevant or not, without considerable background knowledge. In this respect we plan to
employ crowd sourcing platforms such as Crowdflower, in order to obtain larger and
possibly cleaner labeled datasets, but even then, the annotators require considerable
background knowledge for labelling (e.g, political climate in Ireland).

6 Conclusion

In this work we present a framework for connecting news articles to their relevant Twit-
ter conversations, as semantically grouped by Twitter hashtags. We discuss the aspect
of continuously tracking a stream of news and tweets, and present an approach for ob-
taining a large focused Twitter stream, automatically seeded by a dynamic keyword set
extracted from the articles. Furthermore, we model the problem of hashtag assignment
as a classification problem, and analyze a framework for hashtag retrieval and appro-
priate features and data for building a hashtag classifier. We evaluate our methods and
show that our approach achieves high precision for this task.
Future Work. We plan to improve our approach by avoiding using manually labelled
data (which is expensive) and instead using Article-User Hashtag data (which is free to
obtain) as training data. This means changing the two class classification problem into
one class (without negative examples), or two class with noisy/random negative data.
The Article-User Hashtag data collected through the real-time Twitter stream could help
re-training the classifier and keeping it up-to-date, to avoid potential concept drift.

We plan to extend our study to track several RSS news feeds and Twitter conversa-
tions, and test a prototype with journalists. We also intend to investigate applications of
our methods to clustering of articles in hashtag space, story tracking and event detection.
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An early prototype Insight4News system4 integrates the techniques described here, and
demonstrates the real-time, large-scale nature of our proposed hashtag recommendation
process. Unlike the 24 hours time window used in this paper, the Insight4News system
updates hashtag recommendation for articles every 15min, and processes around 300
articles pre day.
Acknowledgements This work was supported by Science Foundation Ireland under
grant 07/CE/I1147.
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11. Tadej Štajner, Bart Thomee, Ana-Maria Popescu, Marco Pennacchiotti, and Alejandro
Jaimes. Automatic selection of social media responses to news. In Proceedings of the 19th
ACM SIGKDD international conference on Knowledge discovery and data mining, pages
50–58. ACM, 2013.
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Abstract. The study of recommender systems based upon implicit binary pur-

chase data constitutes an under-investigated area. The objective of this study is 
to evaluate configuration options of memory-based collaborative filtering (CF) 
for generating recommendations based upon online binary purchase data with 
different characteristics. First different algorithm configurations are identified. 
More specifically, three important algorithm parameters are investigated: the da-
ta reduction technique, the user- versus item-based CF and the similarity meas-
ure. Results on synthetic datasets show that these three factors influence the ac-

curacy results of an algorithm. In a second analysis, extended experiments are 
set up to gain more insight into the influence of input data characteristics on the 
relative success of the CF configuration options. In particular, three input char-
acteristics, sparsity level, item purchase distribution and item/user ratio are ma-
nipulated to analyze the impact on the algorithm’s best configuration. Results 
show that the best performing algorithm is consistent, independently from the 
input data characteristics. 

Keywords: Collaborative filtering, purchase data, synthetic data, evaluation 

metrics, data reduction, similarly measure 

1 Introduction 

In a typical E-commerce setting a customer receives an overload of information. In these situa-
tions, it is impossible for a customer to make optimal or even good product evaluations and 
purchase decisions. To cope with this overload of information, recommendation systems are 
designed. Besides the clear advantage for the customers, E-tailors also benefit from these sys-

tems, because they increase sales, revenue and loyalty [1]. 
A common used technique in recommendation systems is collaborative filtering (CF). CF 

systems propose a personalized set of items based on the customer’s past behavior and activi-
ties of its peers. A good overview of the main existing algorithms is given in [2] and [3]. In a 
vast part of the literature, recommendations are based upon explicit customers’ ratings [4]. 
These systems base product propositions upon ratings explicitly given by customers and its 
peers on a rating scale. Although these ratings clearly represent the customer’s preference, it 
demands the user’s effort, time and cost [5]. Additionally, results can be biased because cus-
tomers have difficulties expressing their interest, leading to arbitrarily given or incorrect rat-

ings. In most systems only a small fraction of the products purchased is rated, resulting in only 
a partial view of a customer when using explicit data [6]. 
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To overcome these problems, implicit ratings can be used [6]. In contrast to explicit ratings, 
implicit ratings do not require user feedback, but derive affinity with items from actual user 
behavior. In an online retail setting characterized by a broad, deep and fast-changing product 

offering, explicit feedback is often hard to (sufficiently) collect. The collection of implicit feed-
back, on the other hand, is objective and non-intrusive. Implicit ratings come in all kinds of 
forms. For an overview we refer to Palanivel and Sivakumar [6]. In this study binary purchase 
data is used as a recommendation basis [7, 8]. In contrast to recommender systems based on 
explicit user feedback, systems using implicit purchase information remain under-investigated. 
Purchases are an important KPI for every commercial company, which makes it interesting to 
investigate a recommender based on purchase data. 

The proposed study investigates recommendation systems based on implicit binary purchase 

data. In particular, different variations of the memory-based collaborative filtering algorithm 
are tested on binary purchase datasets having distinct input characteristics. Based on this setup, 
an experimental design is constructed to analyze the impact of input characteristics of a pur-
chase dataset on the optimal algorithm configuration.  

The remainder of this paper is organized as follows. The next section discusses some related 
work to better grasp the background of this study. A third section describes the setup of the 
experimental design. A fourth section presents the accuracy results based on 54 synthetic da-
tasets. Finally, section five highlights the conclusions and next steps of the project.  

2 Related Research 

Recommendation systems use available customer information to create relevant personalized 
product suggestions. These recommendations can be based on different kinds of data. A typical 
classification of algorithms is presented by Bobadilla et al. [3]. First, content-based systems use 
past buying behavior of a customer to link these purchases to similar products based on charac-
teristics. Second, demographic-based systems exploit socio-demographic data to predict rele-
vant recommendations based on similarity in customers’ characteristics. Third, collaborative 
filtering algorithms use past behavior of a customer, but, in contrast to content-based systems, 
they do not use product characteristics. Collaborative systems identify customers exhibiting the 

same behavior. Based on actions of these peers, products are suggested. Fourth, by combining 
different algorithms, hybrid solutions can be created, using different kinds of data to optimize 
the performance of the algorithms. 

This study uses collaborative filtering algorithms based upon implicit binary purchase da-
tasets pre-processed by a data reduction technique, as further elaborated in this related research. 

2.1 Implicit Binary Purchase Data 

The collaborative filtering literature typically refers to situations in which a customer expresses 
a preference by giving an explicit rating to a certain item [4]. In these cases recommendations 
are based upon the ratings explicitly given by a customer. As discussed in the introduction, 
using explicit data can have some flaws.  

This study focuses though on implicit data and in particular on binary purchase data [7, 8]. 
This particular information, directly related to purchase behavior remains under-investigated in 
literature. As in the general case of recommender systems, algorithms possibly suffer from 
problems related to the input characteristics of the binary purchase matrix [9]. This study inves-

tigates sparsity, purchase distribution and item/user ratio. 

82



Sparsity. A common recommender problem is the curse of dimensionality [9]. Typically an 

input matrix is very sparse, since a customer only buys a limited number of products and so 
products are only purchased by a limited number of customers. CF configurations tend to have 

difficulties with this scalability and sparsity, possibly influencing the model performance. A 
sparser input dataset leads in many cases to a decrease in accuracy and coverage of the pro-
posed algorithm [9]. Typically datasets are very sparse, indicating this characteristic could 
indeed be an important factor to bear in mind. 

Purchase Distribution. A second possible input characteristic problem is the distribution of 

purchases. Typically some items are very popular, but most products are only bought a few 
times. CF has the tendency to be less accurate towards the long tail and promoting the popular 
products [10].  

Item/User Ratio. A third factor influencing the performance of CF is the item/user ratio. In 

settings with a low item/user ratio, it might be beneficial to use item-based algorithms since 
they are less computationally expensive. Moreover a user-based algorithm could be preferable 
in a setting with a high item/users ratio [11]. On top can the prediction accuracy of an algorithm 
depend on the ratio between items and users. 

2.2 Data Reduction 

Data reduction has as indirect advantage that sparsity is reduced [9]. One of the possibilities is 
using data reduction in the pre-processing phase of the algorithm’s building process [5]. Alt-
hough very popular in an explicit ratings context, reduction techniques are less used on implicit 
binary data [8, 12,13], while  other fields of research frequently use binary reduction techniques 
[4, 14]. 

In this study reduction techniques are only used as pre-possessing step of the collaborative 

filtering procedure to gain efficiency and memory. Although direct imputation methods based 
on decomposed matrices are used in the past, this technique is not replicated in this study. The 
main reason for not using the direct method is the structure of the input matrix. Since direct 
imputations have as goal to estimate blanks in the original matrix and our input matrix only 
contains 0/1’s, no purchase/purchase, and no missing values, direct imputation is less useful. 

Four data reduction techniques are used in the pre-processing phase of the algorithm build-
ing process. Three popular reduction techniques in literature are singular value decomposition 
(SVD) [5], nonnegative matrix factorization (NMF) [4] and logistic principal component analy-

sis (LPCA) [15]. These methods will be used in this study. Additionally a fourth reduction 
technique, correspondence analysis (CA), is applied. This method is conceptually similar to 
PCA, but can only be applied to binary data [16]. CA is never used in recommendation settings. 
Next to the reduced input matrices, the non-reduced purchase matrix is used as input.  

2.3 Memory Based Collaborative Filtering 

This paper focuses on memory-based collaborative filtering based on binary purchase data. 

Memory based CF is one of the two main distinctions in CF. In contrast to model-based CF [2], 
memory-based CF does not estimate a model to make recommendations. It only uses the user-
item input matrix to calculate recommendations [17]. 

Until today memory-based CF remains one of the most popular algorithms in literature. The 
fact that it is only using the user-item matrix as input is a big advantage, since no extra data has 
to be gathered. The algorithm uses actual customer behavior as input for making the recom-
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mendations. Based on the user-item matrix, similarity is calculated and predictions are often 
based on the k-nearest neighbor algorithm [17]. 

CF Methods. Two possible distinctions exist in terms of the used CF method. An algorithm 

can be user- or item-based. The former type of system calculates similarity between customers. 
Products are proposed to users based on the behavior of their nearest neighbors [17]. In con-
trast, an item-based system calculates similarity between products and proposes similar items 

compared to the items purchased by a customer.  

Similarity Measure. To identify nearest neighbors, similarity has to be calculated. In literature, 
many measures are considered [18]. In binary data settings cosine, Pearson correlation [13] and 

Jaccard’s similarity [19] are often used. In contrast to cosine and Pearson correlation similarity, 
Jaccard’s measure is based on set theory and can only be used on binary data. 
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Equations (1) and (2) represent respectively the cosine and Pearson correlation similarity 

measures. In these formulas      and      represent the purchase of item i by respectively cus-

tomer x and y in a user-based setting. In an item-based setting,      and      represent respec-

tively the purchase of product x and y by customer i.   ̅̅ ̅ and   ̅̅ ̅ represent respectively the mean 

purchase rate of customer x and customer y in a user-based setting. In an item-based setting,   ̅̅ ̅ 

and   ̅̅ ̅ refer to the mean purchase rate of product x and product y. Ixy, Ix and Iy represent the set 

of products bought by respectively customer x and y, customer x and customer y. 
Equation (3) represents Jaccard’s formula for calculating similarity between two binary pur-

chase vectors. In this formula     is the number of products bought by both customer x and y 

in a user-based setting. In an item-based setting,     represents the number of customers 

purchased both product x and y.       represents the number of products bought by at least 

one of both customers in a user-based setting. In an item-based setting,      represents the 

number of customers who purchased at least one of the products x and/or y.  

3 Setup of an Experimental Design 

To analyze the link between input characteristics of the binary purchase input matrix and al-
gorithm variations, a 5 x 2 x 3 between-subjects experimental design is constructed. The condi-
tions of the experiment are the algorithm variations as discussed in related research. All algo-
rithm variations are tested on 54 synthetic datasets with different input characteristics [20, 21], 

which are discussed in paragraph 3.1. Afterwards, results are calculated and algorithms are 
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compared to obtain robust results identifying the best algorithm combination for given input 
characteristics. 

3.1 Input Data Characteristics 

Every binary implicit data matrix is unique and has its own characteristics. These characteris-
tics can influence the optimal algorithm configuration, discussed in paragraph 3.2 and the final 
results of the model. In this proposed study, three important data characteristics are investigated 
on synthetic datasets: sparsity level, purchase distribution over products and item/user ratio. 

Synthetic Data Characteristics. In order to mimic real-life situations, 54 synthetic datasets, 

characterized by six levels of sparsity, three different purchase distributions and three distinct 
item/user ratios, are created. 

Sparsity levels. Sparsity levels are artificially created to mimic possible real-life situations. 

Since a typical recommendation setting consists of very sparse input matrices, six sparsity 
levels are variable between 95% and 99.50% [20, 22, 23]. 

Purchase Distribution. Purchases typically show a long tailed distribution over products. Some 

popular items are bought frequently, but most items are purchased only a few times [10]. In the 
study, the input is varied from a logarithmic distribution, having a very long tail over a linear 
distribution with a moderate tail to a uniform distribution. 

Item/User Ratio. A last manipulated input characteristic is the item/user ratio. By simply vary-
ing the number of rows of the binary input matrix, the ratio adjusts [20]. The synthetic datasets 
consist of 1 000 items, but the number of customers is adjusted. The number of users is set to 

500, 1 000 and 2 000, resulting in item/user ratios of respectively 2, 1 and 0.5. 

Synthetic Data Generation. Although the aim of the datasets is to be generic and generaliza-
ble, a certain structure needs to be inherently present in the data to be able to discover patterns. 

To create this structure, the correlation matrix of a binary purchase dataset of a European E-
tailor is mimicked in the synthetic datasets.  

      
        

√        
  ⇔          √               where i, j          . (4) 

Equation 4 shows the relationship between the correlation, from the test dataset, the margin-

al probabilities and pairwise joint probabilities between two item vectors i and j [24].     indi-

cates the correlation between vector i and j,    and    represent the marginal probabilities of 

item i and j,    and    denote (    ) and (    ) and     represents the pairwise joint proba-

bilities between vector i and j. Based on equation 4 purchase probabilities of each synthetic 
product (item vector) can be generated for a certain number synthetic customers. For each 
synthetic product i a purchase probability vector    [       ], where C stand for the number 

of customers, can be generated.  

Next to taking into account the correlation structure, the described step gives the ability to 
control the item/user ratio and sparsity level. By setting the number of customers (C), the 
item/user ratio is regulated. By adjusting the marginal purchase probabilities by a constant, 
sparsity is set. The same constant should be applied to every item to not to disrupt the purchase 
probability structure. 
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Purchase probabilities are continuous elements in [0, 1], whereas a binary input matrix 
should be created. Transforming the purchase probability vector    to a binary purchase vector 

   [       ] can be done by applying a threshold. Every element     is defined by equation 
5. 

     {
       ( )

       ( )
                     (5) 

Implementing equations 4 and 5 gives the possibility to create binary item purchase vectors 

accounting for item/user ratio and sparsity. To be able to vary the purchase distribution, func-
tional thresholds f(i), as described in equations 6, 7 and 8, are applied. Each of these equations 
results in different structures of the binary input matrix. 

Firstly, a logistic function is applied as threshold to create a logarithmic distribution of pur-
chase frequencies of each item. The resulting distribution is characterized by a limited number 
of products frequently purchased and a lot of products only purchased a few time. 

  ( )        (    )
(   )                  . (6) 

Secondly, a linear function is imposed to give the purchase distribution a linear structure. 

 
 ( )     

 

(    )
                    (7) 

Finally, a constant is set as threshold to create a uniform purchase distribution. 

  ( )     (8) 

3.2 Experimental Setup 

To get a better notion which algorithms perform best in combination with certain input charac-
teristics, different algorithm configurations are calculated on input datasets discussed above. 
The algorithms are based on memory-based CF, but differ in dimension reduction method, CF 
method (item- vs. user-based) and similarity measure, as discussed in the related research sec-

tion.  
The used data reduction methods are SVD, NMF, LPCA and CA. Together with the none 

reduced purchase matrix, five different input matrices for the collaborative filtering algorithm 
are created. Item- and user based CF are used as CF-method and cosine, Pearson correlation 
and Jaccard’s similarity constitute the three measures for similarity calculation. 

Combining the discussed algorithm configuration elements gives the opportunity to create a 
5 x 2 x 3 between-subjects experimental design. Different experimental conditions are con-
structed by combining each time one of the five proposed reduction techniques with user- or 
item-based CF and one of the three discussed similarity measures. To make the results general-

izable and valid, tests are run on the 54 synthetic datasets. In total 1620 individual runs with 
different input characteristic – algorithm configuration combinations are executed. 

3.3 Evaluation Metrics 

Results of different CF configurations on different binary input matrices can be assessed using 
accuracy measures. This allows comparing the performance of the used algorithm variations on 

input matrices with a variety of specific characteristics.  
To evaluate the algorithms, Top-N recommendations consisting of 5, 10, 20, 30, 40, 50, 60, 

70, 80, 90, 100, 150 and 200 items are considered. The accuracy of the predictions is expressed 
in terms of F1-measure [11], calculated on a random test sample consisting of 20% of the input 
dataset. 
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4 Results 

Firstly, this study investigates the best algorithm configuration (data reduction technique, CF-
method and similarity measure) in general, without taking dataset characteristics into account. 
This will result in an evaluation of the best overall configuration. Secondly, the best algorithm 
configuration for each dataset separately is investigated. By comparing different champion 
models and good alternatives, for datasets with distinct input characteristics, conclusions can be 

draw with respect to the best input characteristic – algorithm variation combination. 

Method. To evaluate the effect of the different algorithm configurations on the different syn-
thetic datasets an ANCOVA analysis is run. 

 
                                                  

                                 . 
(9) 

Equation 9 presents the ANCOVA model that allows analyzing the main and interaction ef-
fects of reduction technique (RM), CF-method (CFM) and similarity measure (SM). Selection 
size (SS) is included as a covariate to control for different top-N selections. The inclusion of the 

covariate makes it possible to evaluate the F1-measures for every selection size in one analysis 
instead of repeating single ANOVA’s for each top-N. 

Best overall configuration. Analyzing the main effects of reduction technique, CF-method and 

similarity measure results in an evaluation of the best overall setting of each of the three algo-
rithm variation parameters. Results show reduction method (F4, 252 = 121.95, p = < .0001), CF-
method (F1, 252 = 154.59, p = < .0001) and similarity measure (F2, 252 =368.09, p = < .0001) have 
a significant impact on the F1 performance of the model.  

CA is the significantly best performing data reduction method, followed by NMF and SVD, 
which do not significantly differ from each another. LPCA performs significantly worse than 
mentioned reduction techniques, but significantly outperforms models based on the none re-
duced matrix. In terms of CF-method, item-based CF significantly outperforms the user-based 

method. Similarity measures also show a significant difference. Correlation and cosine similari-
ty are performing similar, while both measures significantly outperform Jaccard’s similarity. 

Best configuration within datasets. The ANCOVA analysis is run separately for each of the 

54 synthetic datasets with 299 different model configurations (observations). The analysis 
results in a champion model, based on F1 performance, for each synthetic dataset with different 
input characteristics. Tables 1, 2 and 3 visualize the results. Beneath the tables, models not 
significantly differing from the champions are listed. 

CF-Method. In the tables, only item-based algorithms are listed as champions. This indicates 

that, regardless the characteristics, item-based CF outperforms user-based CF for each dataset. 

Similarity Measure. The absence of models using Jaccard’s measure in the tables indicates that 

these algorithms perform significantly worse than models with cosine and Pearson correlation 
similarity measures. For each dataset having a model with cosine (correlation) as champion 
model, the correlation (cosine) alternative does not significantly differ. This observation indi-
cates that cosine and correlation similarity are statistically interchangeable. For 24 datasets, 
correlation constitutes the champion model. In 30 cases, cosine delivers the best results. 
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Table 1. Champion models for datasets with an item/user ratio of 2 (= 500 users) in function 
of sparsity and distribution 

 Distribution 
Sparsity Logistic Linear Uniform 

0.95 CA / Item / Corr 
1
 CA / Item / Cos 

1 / 3 / 4 / 5
 CA / Item / Cos 

2 / 3 / 4 / 5 / 6 

0.96 CA / Item / Corr 
1
 CA / Item / Cos 

1 / 3 / 4 / 5
 CA / Item / Cos 

2
 

0.97 CA / Item / Corr 
1
 CA / Item / Corr 

1
 CA / Item / Corr 

1 / 3 

0.98 CA / Item / Corr 
1
 CA / Item / Corr 

1 / 3 
CA / Item / Corr 

1
 

0.99 CA / Item / Corr 
1 / 3 

 CA / Item / Cos 
2 / 3 

CA / Item / Corr 
1 /

 
3
 

0.995 CA / Item / Corr 
1 / 3

 CA / Item / Corr 
1 / 3 / 4 

CA / Item / Cos 
2 / 3 

   

1
 CA / Item / Cos 

3
 NMF / Item / Cos, Corr 

5 
SVD / Item / Cos, Corr 

2
 CA / Item / Corr 

4
 None / Item / Cos, Corr 

6 
LPCA / Item / Cos, Corr 

Table 2. Champion models for datasets with an item/user ratio of 1 (=1 000 users) in function 

of sparsity and distribution 

 Distribution 
Sparsity Logistic Linear Uniform 

0.95 CA / Item / Corr 
1 / 5

 CA / Item / Cos 
2 / 4 / 5 

CA / Item / Cos 
2 / 3 / 4 / 5 / 6

 

0.96 CA / Item / Cos 
2 

CA / Item / Cos 
2 / 4 / 5

 CA / Item / Cos  
2
 

0.97 CA / Item / Cos 
2
 CA / Item / Corr 

1 / 5 
CA / Item / Corr 

2
 

0.98 CA / Item / Cos 
2
 CA / Item / Cos 

2
 CA / Item / Cos  

2
 

0.99 CA / Item / Corr 
1
 CA / Item / Cos  

2
 CA / Item / Corr 

2 / 3
 

0.995 CA / Item / Corr 
1
 CA / Item / Cos 

2 / 3
 CA / Item / Cos 

2 / 3 / 4
 

   

1
 CA / Item / Cos 

3
 NMF / Item / Cos, Corr 

5 
SVD / Item / Cos, Corr 

2
 CA / Item / Corr 

4
 None / Item / Cos, Corr 

6 
LPCA / Item / Cos, Corr 

Table 3. Champion models for datasets with an item/user ratio of 0.5 (=2 000 users) in func-
tion of sparsity and distribution 

 Distribution 
Sparsity Logistic Linear Uniform 

0.95 SVD / Item / Cos 
1 / 2 / 5 

 SVD / Item / Corr 
1 / 2 / 4 / 5

 CA / Item / Cos 
2 / 3 / 4 / 5 / 6 

0.96 CA / Item / Cos 
2 / 5

 SVD / Item / Cos 
1 / 2 / 4 / 5

 CA / Item / Cos 
2 / 3 / 4 / 5 / 6

 

0.97 CA / Item / Corr 
1 / 5

 CA / Item / Cos 
2 / 5

 CA / Item / Cos 
2 / 5

 

0.98 CA / Item / Cos 
2 

CA / Item / Cos 
2 / 5

 CA / Item / Corr 
1 / 3

 

0.99 CA / Item / Cos 
2
 CA / Item / Cos 

2
 CA / Item / Corr 

1
 

0.995 CA / Item / Corr 
1 

CA / Item / Cos 
2
 CA / Item / Corr 

1 / 3
 

   

1
 CA / Item / Cos 

3
 NMF / Item / Cos, Corr 

5 
SVD / Item / Cos, Corr 

2
 CA / Item / Corr 

4
 None / Item / Cos, Corr

  

6 
LPCA / Item / Cos, Corr 

Data Reduction Method. In 51 out of 54 datasets the champion model is based on a CA reduced 

matrix, indicating this is the overall best reduction technique. For three datasets an algorithm 
based on the SVD decomposed matrix gives the best results. For these models CA configura-
tions are not performing significantly worse, indicating that CA configurations are good alter-

natives for the SVD based models in these three cases. This logic also goes the other way 
round. Although CA reduction is the clear champion, in most cases other configurations are 
performing statistically similar, meaning these models can serve as good alternatives. 

Item-based models using cosine or correlation similarity based on the NMF reduced matrix 
serve as good alternatives for CA configurations in 19 cases. Especially in datasets with a high 
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item/user ratio (2), NMF seems a good alternative. For 11 out of 18 datasets having an 
item/user ratio of 2, NMF is not performing significantly worse than CA.  

Creating a model based on the SVD reduced matrix is a statistically good input basis for 18 

out of 54 datasets. Lower sparsity, gives a higher chance that SVD is a good alternative for CA, 
especially in cases with a lower item/user ratio. The good performance of SVD in these cases is 
emphasized by being the champion in datasets with sparsity 0.95 (and 0.96 only for linear dis-
tribution) and an item/user ratio of 0.5. 

Using the the full none reduced matrix as input is a good alternative in 12 cases. All cases 
represent linear or uniform distributions with mainly low sparsity levels (0.95 – 0.96). Watch 
out that for datasets with these characteristics most configurations based on item-based CF and 
cosine or correlation are statistically good alternatives. 

LPCA reduced input matrices serve only a good alternative in 4 cases. For these 4 datasets, 
being cases with low sparsity and a linear or uniform distribution, all models using item-based 
CF and cosine or correlation similarity are performing significantly similar. This indicates that 
LPCA can be seen as the data reduction technique resulting in the least good accuracy results. 

5 Discussion and Future Work 

The presented prediction accuracy results, measured by the F1-statistic, indicate that item-based 
CF outperforms user-based CF and cosine and Pearson correlation give the same results but 
beat Jaccard based models. As data reduction technique CA gives the best results, but in some 

specific input characteristic cases NMF, SVD or the none reduced matrix can serve a good 
alternative. 

Results presented in this study only take the F1-measure into account. To broaden the scope 
of the analysis, extra evaluation metrics will be analyzed in the next steps of the project. For 
prediction accuracy recall, precision and ROC-curve will be considered next to the F1-measure. 
Ranking accuracy will be measured using Kendalls Tau-C. Next to accuracy, item coverage, 
computation time and diversity (Intra-List Similarity) will be analyzed to get a complete out-
look of each input characteristic – algorithm configuration combination. 

To validate the results of this study, the discussed experimental design will be replicated on 

10 real-life datasets of a leading European E-tailor.  
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LIA/Université d’Avignon et des Pays de Vaucluse
?? 39 chemin des Meinajaries, Agroparc BP 91228, 84911 Avignon cedex 9, France

firstname.name@alumni.univ-avignon.fr

Abstract. In the last few years, football betting had known a large ex-
pansion in the world, using different ways to try to guess and predict
the unknown in the sport. Every time, people try to prognosticate the
results of matches using probabilistic, statistic and other methods to
get the maximum benefits, especially with the emerging of betting web-
sites. In this paper, we present an alternative approach, to state of the
art probabilistic models, based on Partial Least Square Path Modeling
(PLS-PM). We first show that the simple PLS model containing only
statistical resources about each team are efficient to predict the team
ranking at d+1 and this gives a state of the art prediction of match
outcomes. We then take advantage of PLS ability of integrating complex
and heterogeneous data to reach a practical model by including textual
data, taken from tweets related to teams, that we previously classify by
polarity using robust sentiment analysis in multiple languages. Another
learning of our experiment is the role of the inner model in PLS when
used for prediction purpose. Unlikely Bayesian networks, the latent vari-
able used in the prediction need to be deeply inside the inner model
and not considered as marginal outcomes, this to allow back and forth
retro-propagation from multiple types of data. The main purpose of our
work is to show that PLS-PM can be surprisingly efficient in predicting
tournament outcomes for which temporal statistics and social network
data are available if inference is based on central inner latent variables.

1 Introduction

Football is one of the most famous sport in the world, where betting on results is
very popular. But it is not as easy as it looks, because even the football experts
are not expert in prognostication as shown by [3]. Almost all systems and offices
of betting use the probabilistic model to calculate odds linked to each part of
bet. [5] gives in “Statistica Neerlandica”, an example how scores are obtained
using Poisson goals distribution. We want to prove, by these experiments, that
probabilistic model is not the only way that allows to get efficient prognostica-
tions and intend to explore if a betting system based on correlation analysis of
multiple and sparse data can be improved using different Partial Least Squares

?? http://lia.univ-avignon.fr/
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Path Modeling (PLS-PM). The remainder of the paper is structured as follows.
First we present a simple model, based only on the ranking of teams. Then, we
will use a model based on a few variables before combining these two solutions,
and we will compare it with a probabilistic model, which is the rating used in
different sport betting game. Finally, we will try to improve our PLS-PM model
using text mining over twitter. Our work focus on on the leagues of France
“League 1”, England “Premier League”, Spain “La Liga”, and Italy “Serie A”,
each league is composed by 20 teams, and data for the first experimentation
were obtained from the 14th, until the 23rd day of the league, and from the last
6 days for the model that contains textual data.

2 PLS-PM models

PLS-PM is a statistical method that allows studying and modeling complex rela-
tionships between observed (manifest) and latent variables. Data is analyzed like
a structure made of blocks of manifest variables, and each block is summarized
by a latent variable. This approach was developed by Herman WOLD during
the 70s of the last century, when he presented PLS for the first time in 1979.
But its popularity just started recently to increase in different domains. PLS-PM
is formally represented by two sets of linear equation, the inner model and the
outer one. The first model represents the relationships between latent variables,
while the other model represents the relationships between a latent variable and
its manifest variables. PLS-PM is a way to estimate parameters, it is used to
find complex linear regressions, based on the latent and manifest variables, by
calculating the solution of the general underlying model of multivariate PLS.
For more details on how to manipulate manifest variables and these relations
we refer the reader to [1] and [7]. We try to use different models to demonstrate
the ability of PLS-PM concerning prognostication on football games. By these
experiments we want to find the success indicator (SI) of each team. This will
allow us to compare two teams and then, prognosticate which one will win. We
tried to combine in one hand the method used in [6] based on simple statistics
concerning number of goals scored and conceded, and on the other hand, the
method used in [5], where he makes the difference between matches played at
home and away. This way, we had to duplicate our PLS-PM model, in order to
calculate both at home and away SI. Before starting, let us show you the type of
data that we use, it is a table containing information for each team (in table 1).

Table 1. Resume of the 23rd day of league 1

Team GSH GSA PSH PSA GCH GCA PCH PCA WH WA Rank

PSG 35 19 1.00 0.91 -5 -10 0.67 0.27 9 7 20

ASMonaco 19 19 0.91 0.92 -6 -10 0.54 0.42 8 6 19

Lille 16 8 0.91 0.50 -6 -8 0.64 0.58 8 4 18
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This table shows some statistics on the top 3 ranked teams, collected after crawl-
ing and scraping some football websites.
GS (H/A): Number of goals scored at home (H) or away (A).
PS (H/A): Percentage of game where the team scored goal(s).
GC (H/A): Number of goals conceded.
PC (H/A): Percentage of game where the team conceded goal(s).
WM (H/A): Number of won games.

2.1 Model based on Ranking

We started by an inner model that contains three latent variables: Attack, De-
fense, and Success. This first experiment consists in realizing a baseline model,
including only the ranking of the league as a manifest variable, which reflects
the latent variable Success (as shown in figure 1). Keep in mind that we used
that model twice respectively for away and at home Success Index (SI).

Fig. 1. Simple model based on Rank

Figure 1 represents the relation that exists between Attack, Defense, and Suc-
cess, and our model is based on how each variable impacts other variables, so
we can express our model in the following equation.

Successrank = f(Attack,Defense)

2.2 Model based on won matches

In this second experiment, we replaced the variable Ranking, by other latent
variables like number of wins (as shown in figure 2).

Fig. 2. Simple model based on number of won matches

In figure 2, Success is based this time on number of won games, so we can
express it like:

Successwon = f(Attack,Defense)
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2.3 Model based on Ranking and won matches

The next experiment consists in mixing the previous models, to get this PLS-PM
model (as described in figure 3):

Fig. 3. PLS-PM model based on number of won matches and Rank

Success(rank,won) = f(Attack,Defense)

In each experiment, we used our results to verify the efficiency of the model, by
prognosticating the results of matches, and we got results that gives the number
of the right prognostication in ten games by day (figure 4).

Fig. 4. Comparison between the previous models

Figure 4 compares the number of matches prognosticated by each model, from
the 15th week, until the 26th one, it shows how, by using the model that combines
ranking and won games, the number of correct matches prognosticated is greater
than using models separately.

Success dayi(WM + Rank) ≥Max(Success dayi(WM),Success dayi(Rank))

As an interesting result it should be important to notice that the lowest values
of correct matches prognosticated in one day is mostly due to the abundance
of draws, which are difficult to predict (e.g. 22nd week, there were 5 draws,
which explain that our model predicted only 2 matches). So, we see that we can
improve our prognostications by adding more manifest variables, such as number
of points obtained in the last matches, as well as systems and websites of betting
do based on previous matches.
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2.4 Probabilistic model

Betting systems consider three values for each bet as it is represented in the
following table (in table 2). Here, we consider the prognostication true if the
result was a victory for Monaco, (1) means victory of the host team, because it
had the highest probability of winning, but unluckily, this prognostication was
false because the game finished by a draw which its odd was 3.34. Conversely,
the prognostication in the second example was true, because Lyon, which has
the lowest odd, won that game. So we had follow this way to calculate the results
of other matches.

Table 2. Example for probabilistic model based on Odds

Host Result Visitor (1) (x) (2)

Monaco 1 - 1 Lille 1.88 3.34 4.35

Nice 0 - 1 Lyon 4.48 3.54 1.82

(1): Host wins, (x): Draw, (2): visitor wins

Notice that odds are the inverse of probabilities values.

Odds =
1

p(ω)
, ω ∈ Ω{1, x, 2}

Fig. 5. Comparison between PLS-PM and probabilistic model

Figure 5 compares the probabilistic model, which is the state of the art, with our
last PLS-PM model which assembles ranking and number of games won. These
statistics between each model, prove how our PLS-PM model as efficient as the
probabilistic model.

2.5 PLSPM with Twitter

The most interesting feature in PLS-PM, is that it can deal we a large variety
of heterogeneous variables, provided that the correct model is set. Our next ex-
periment consists in adding textual data in the model. As example we took the
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reputation of each team on twitter, using twitteR package. It allows to collect
tweets concerning each team. Then we used sentiment package in order to per-
form a 3-valued (positive, negative and neutral classes) polarity classification of
these tweets using multiple languages opinion lexicon [2] [4]. As we mentioned,
the difficulty relies in setting the correct model. For example, in a first trial we
used a model which considers the reputation of a team as an element of its suc-
cess (as described in figure 6). This first model downgraded all results as shown
in (table 3).

Fig. 6. The importance of choosing the right sense of relation between variables

Table 3. Result of wrong Model

Team Success H Success A

PSG -1.7766 -1.7766
ASMonaco 0.8521 0.8521

Lille -0.7359 -0.7359
OM -0.3059 -0.3059

StdReims 2.2199 2.2199

In fact, it is not the reputation which affects success, but the opposite, so we
changed the path matrix of the last model as described in figure 6.

{
Success = f(Attack,Defense)
Success = f−1(Reputation)

By next, we compared the result obtained by the probabilistic model with the
improved PLS-PM model, and both are closer (table 4).

Figure 7 summarizes the last table, where we see that the difference between
the number of matches predicted by probabilistic model, and PLS-PM model
including text data (Twitter) is only 1 match in a total of 240, and 9 matches
more than our basic PLS-PM model. This is an encouraging result, knowing that
Probabilistic model, based on Poisson distribution, has a high performance of
prediction because it integrates time series.

96



Opinion mining PLSPM for football betting 7

Table 4. Number of match predicted by each model

Games Results of matches Model Predictions %

70 1 - 30 Probability 38 0,54
FR 70 N - 19 PLSPM 33 0,47

70 2 - 21 Twitter 37 0,53

60 1 - 29 Probability 30 0,50
ES 60 N - 16 PLSPM 28 0,47

60 2 - 15 Twitter 28 0,47

50 1 - 23 Probability 30 0,60
EN 50 N - 8 PLSPM 27 0,54

50 2 - 19 Twitter 29 0,58

60 1 - 29 Probability 35 0,58
IT 60 N - 12 PLSPM 36 0,60

60 2 - 19 Twitter 38 0,63

Fig. 7. Percentage of match predicted by each model

The most important thing to notice, concerning PLS-PM model including text
data, is that it improves the number of predicted drawn matches, and this is
what explains how it outperforms PSL-PM basic model, especially in the case
of teams with similar rankings. The method considering that a game will finish
by a draw is resumed in the next formula :

Draw⇔ ‖Success at Home–Success Away‖ ≤ 0.02

Tweets give in fact the latest information concerning one team like when a player
has been being injured, or excluded and would not play next game. In addition,
it is significant to know if a team is well supported or not, or it is in a good
financial situation.
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3 PLS-PM and Bootstrapping

Our last experiment consisted in comparing 3 PLS-PM models (as described in
figure 8), where we applied the bootstrapping method to obtain information
about the variability of our different estimated variables.

Fig. 8. Different models used

For that, we used in our model, in a first time, only variables containing the
probability of winning for each team in such game. Then we repeated the same
experiment by introducing variables containing this time the success of every
team. Finally we mixed those models considering both variables. We applied
those model on a collection composed of a variety of 240 games played this
season in English premier league from the eleventh days, until the thirtieth one
(table 5). We ignored the ten first days because the amount of data is not
sufficient to compute success by using PLS-PM, so the results during those first
journeys were not reliable to estimate the effectiveness of the model.

Table 5. Extract showing the kind of data we used in this experimentation

Team1 Suc1 Prob1 Team2 Suc2 Prob2 Day Result

WestHam -1.2342 1.94 Cardiff -0.3484 4.02 11 1
WBA -0.4313 2.29 Southampton 0.7968 3.12 11 -1

Swansea -0.8592 4.37 ManUtd 0.7436 1.86 11 -1
Sunderland -1.0079 2.21 Fulham -0.4017 3.30 11 -1

Norwich -0.3735 3.17 Everton 1.03976 2.31 11 0
Liverpool 1.4007 1.39 Stoke -0.82890 8.67 11 1
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Table 5 represents success at home (Suc1) and away (Suc2), we computed before,
by applying the PLS-PM model and the probability of winning that match. The
variable Result equals 1 when the receptor won, 0 when the match finished by
a draw, and -1 when the visitor won. By validating our model using bootstrap-
ping, we got the following results of model respectively based on probability, on
success, and on both of them:

Table 6. Results of Bootstrapping

Model Original Mean.Boot Std.Error perc.025 perc.975

Probability 0.2155 0.2271 0.0456 0.1363 0.3158
PLS-PM 0.3384 0.3467 0.0465 0.2514 0.4171

Probability + PLS-PM 0.3010 0.3133 0.0463 0.2186 0.4011

As we can see in table 6, the lowest original value of R square obtained, depending
on result, is when we used probability (21%), it means that the performance of
the model based on probability is low. Poisson distribution depends on short
term time periods and in this experiment, it loses its advantage, because we
considered a long duration. Therefore, when considering the overall performance
of a team over long periods, highest values of original R square rely on the success
scores based on PLS-PM model.

4 Conclusion

Thanks to our different experimentations, we have shown that PLS-PM is a effi-
cient method for prediction and prognostication. Starting by choosing the good
Latent and manifest variables, then creating adequate relations between those
variables, allowed us to get a model very close to the probabilistic one, which
is considered to be the highest performance model in the state of the art. The
main interest of PLS-PM is that we are able to introduce heterogeneous data
in our model, and that is what permitted us to predict some draws by adding
text data extracted from twitter. Draw case is very difficult, even the probabilis-
tic model is not able to properly predict this kind of result. Our investigations
showed that we cannot reach a good result without a lot of information. Never-
theless, such a result is known to be the weak point of PSL-PM, and we clearly
observed it when we were not able to predict any match before the 10th jour-
ney. It means that, due to the lack of data, we could not predict 100 games.
But even the probabilistic model has the same problem, despite that it does not
need such an important mass of data as PLS-PM to predict games. There is a
room of improvement in our results, and we intend to exceed the performance
of probabilistic model as future work by trying to include more information that
influences a football game to see how much game we can predict properly.
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Abstract. We present a novel parallel algorithm for training additive
regression models. The approach relates to a number of other methods
including the backfitting algorithm and alternating direction method of
multipliers. However, we extend the scope of possible applications to
include any ANOVA-type decomposition or an ensemble of random sub-
space projection models, and we show how the algorithm can be paral-
lelised for distributed systems.

The experimental results illustrate the convergence and scaling proper-
ties of the algorithm on real and synthetic data.

Keywords: backfitting, ADMM, additive models, parallelisation, re-
gression, BiCGStab, ensemble learning

1 Introduction

Machine learning applications continuously grow in size and dimensionality as
with the growing interest in data science and increasing computational power
more effort is spent on data gathering and analysis. At the same time, the asymp-
totics of the underlying function approximation algorithms remain unchanged.

With respect to the number of data entries, the linear basis expansion models,
i.e. splines or sparse grids [1], show linear complexity of computation and storage.
This is already optimal for a regression problem without any additional assump-
tions. Hence, further research attempts to minimise the complexity constants
with better implementations, parallelisation, or sub-sampling heuristics [2–4].

With respect to dimensionality, the complexity of most approximation al-
gorithms suffers from the “curse of dimensionality”: a term coined by Richard
Bellman in 1961, which denotes that the computation and storage complexity
for a fixed approximation accuracy depends exponentially on the dimensionality

?? With the support of the Technische Universität München Institute for Advanced
Study, funded by the German Excellence Initiative (and the European Union Seventh
Framework Programme under grant agreement n 291763).
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[5]. The results from information-based complexity suggest that the curse of di-
mensionality can be avoided only if a problem possesses a special structure, i.e.
smoothness or separability, that can be exploited by an algorithm [6, 7].

The methods that exploit this special structure include ANOVA decompo-
sition, additive models [8], sparse grids, and random forests. Additive models
are well established in statistics and thoroughly studied in the literature [9, 10].
Similar concepts are popular in the machine learning community. For example,
recent developments apply new optimisation methods [11] and parallelisation
paradigms [12]. Ensembles of random subspace projection models were success-
fully used for classification and regression [13]. Moreover, estimation of additive
models is an integral part of generalised additive models – a more powerful but
also a more computationally expensive representation concept [9].

In this paper, we discuss an approach for large-scale regression based on ad-
ditive models and a parallel BiCGStab algorithm for optimisation. The method
combines flexibility of choosing from a large number of suitable parametric and
non-parametric models and an optimisation algorithm with fast convergence and
a potential for efficient parallelisation both in data size and dimensionality. It is
used for training additive models, but this restriction can be relaxed to include
ensembles of subspace projection models. We extend the fitting method with
data partitioning using kd-trees and orthogonalisation, which improves data lo-
cality for additive models and has a potential to adapt to manifolds.

The remainder of this paper is organised as follows: Section 2 introduces
the necessary theoretical background. In Section 3 we suggest a Krylov-space
method for solution of normal equations and show how the problem structure
can be exploited for efficiency and parallelisation. We illustrate convergence and
scalability of the new method using benchmark problems in Section 4. Finally,
we conclude with a discussion of the results and provide an overview of future
work in Section 5.

2 Theoretical Background

We consider a dataset of the form (t(1), y(1)), . . . , (t(N), y(N)) with input vari-
ables t(i) and target variables y(i). Ridge regression is often used to find an
approximation of the input-target mapping f in a function space V :

min
f∈V

1
2

N∑

i=1

(f(t(i))− y(i))2 + 1
2λ‖Df‖22, (1)

with a positive regularisation parameter λ and some smoothness operator D.

As mentioned above, (1) suffers from the curse of dimensionality so that
only the problems with a moderate number of input dimensions can be handled.
Approaches that do not face the curse are based on decomposition of the space
V into a sum of simpler function spaces

V = V1 + . . .+ Vn. (2)
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For example, in the context of ANOVA, the decomposition of a function f with
a d-dimensional input has the form

f(t) = f0 +

d∑

j=1

fj(tj) +
∑

1≤i<j≤d
fi,j(ti, tj) +

∑

1≤i<j<k≤d
fi,j,k(ti, tj , tk) + . . . ,

where tj stands for the j-th component of the data point t.

More general, the decomposition (2) may be not exact. For example, if we
limit the number of terms Vj and restrict them to specific low dimensional func-
tion spaces, we obtain an ensemble of subspace projection models. Hereafter we
consider only the 1-dimensional terms fj , but extension to other function spaces
is straightforward.

While it is not assumed that the Vj are linearly independent, we assume that
the smoothness operator is consistent with the decomposition of V , such that
the optimisation problem assumes the form

min
f0∈R,f1∈V1,...,fd∈Vd

1
2

N∑

i=1

(f0 +

d∑

j=1

fj(t
(i)
j )− y(i))2 +

d∑

j=1

λj

2 ‖Djfj‖22. (3)

Many models for representation of fj , for example, linear basis expansion
models, can be cast in terms of linear algebra. Let vector x denote parameters
of f(t) with respect to some generating system, e.g. coefficients of a polynomial
model. Furthermore, let Ax be a vector of function values f(t(i)) and y – the
vector of target values y(i). Taking into account the residual r, we obtain

[A1 . . .Ad]︸ ︷︷ ︸
A

[
xT1 . . . xTd

]T
︸ ︷︷ ︸

x

= y − r (4)

with xj ∈ Rmj , Aj ∈ RN×mj , y, r ∈ RN , x ∈ Rm,A ∈ RN×m, and m :=
m1 + . . .+md. The problem (3) can now be written as

min
x

1
2‖Ax− y‖22 + λ

2x
TDx (5)

with D a block diagonal matrix, which can be partitioned in a structure com-
patible with that of x. Often, D is just an identity matrix. In order to minimise
(5), one needs to solve the normal equations

(ATA + λD)x = ATy. (6)

If we substitute (4) into (6) we obtain the system



AT
1 A1 + λD1 AT

1 A2 · · · AT
1 Ad

AT
2 A1 AT

2 A2 + λD2 · · · AT
2 Ad

...
...

. . .
...

AT
dA1 AT

dA2 · · · AT
dAd + λDd







x1

x2

...
xd


 =




AT
1 y

AT
2 y
...

AT
d y


 . (7)

We are particularly interested in problems where the solution of (7) is used

to determine the predicted values f̂ = Ax = y − r, which in view of (4) can be

written as f̂ := f1 + . . .+ fd, with fj = Ajxj , j = 1, . . . , d. If we multiply every
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row block j of (7) by Aj(A
T
j Aj + λDj)

−1 from the left and introduce

Sj := Aj(A
T
j Aj + λDj)

−1AT
j j = 1, . . . , d, (8)

we obtain equations of the form



I S1 S1 . . . S1

S2 I S2 . . . S2

S3 S3 I . . . S3

...
...

. . .
...

Sd Sd Sd . . . I




︸ ︷︷ ︸
S




f1
f2
f3
...
fd




︸ ︷︷ ︸
f

=




S1y
S2y
S3y

...
Sdy



. (9)

Following the tradition from statistics, we call Sj a smoothing matrix. The
normal equation (9) is the one we are interested in solving instead of (7). In
Section 4 we motivate this preference.

A popular choice for solving (5) on distributed systems is alternating di-
rection method of multipliers (ADMM) [9]. In fact, one can show that if the
penalisation parameter is equal to 1/λ, the ADMM update steps would cor-
respond to a sequence of a Jacobi-iteration for solution of (7) followed by an
update of the auxiliary variable z̄. This motivates the comparison of the two
methods in Section 4. We have to note, however, that this relationship does not
transfer if the penalty or regularisation term is not quadratic.

3 Fitting Methods

Traditionally, problem (9) is solved using the backfitting algorithm [10] in se-
quence of a blocked Gauss-Seidel iterations:

for j = 1 to d do: fj = Sj


y −

∑

k 6=j
fk


 .

Buja et al. have shown that the convergence speed of the backfitting al-
gorithm heavily depends on the magnitude and distribution of the smoothers’
eigenvalues which are significantly smaller than 1. The error terms correspond-
ing to the eigenvectors with eigenvalues near 1 (e.g. constant, linear and low-
frequency) would not be eliminated at all by the algorithm [10].

For regression models, however, it is not unusual that a number of large
eigenvalues are clustered around 1.0. Moreover, a typical distribution of the
eigenvalues of the matrix S contains a single large eigenvalue close to d, followed
by a cluster of small eigenvalues.

At this point we suggest to use a BiCGStab-based Krylov method [14] for
the solution of (9). Not only is it better suited for system matrices with clus-
tered eigenvalues, it would eliminate the error components that are problematic
for backfitting. We refer our reader to the original paper by van der Vorst [14]
for a review of the original algorithm, and adopt its notation in this section.
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A number of improvements for BiCGStab were suggested in the literature that
would reduce the communication on distributed systems [15].

We derived a BiCGStab algorithm for fitting additive models that can be
parallelised in the number of models and data entries. We can improve the
scalability of the original algorithm by exploiting the special structure of the
system matrix S: the j-th block of the result of matrix-vector multiplication can
be calculated as

vj = pj + Sj(
∑

i 6=j
pj) = pj + Sj(

d∑

i=1

pi − pj).

Similar to the ideas in [15], we further reduce the communication overhead by
postponing the calculation of the scalar products until the aggregation of the
results of matrix-vector multiplications is necessary.

Algorithm 1 presents the new fitting procedure. The vectors with the sub-
script “Σ”, e.g. tΣ , represent the sum of individual vectors, e.g.

∑
i ti. The func-

tion Allreduce is known from MPI programming and is similar to the reduce
operation in the Map-Reduce framework. It denotes an application of an opera-
tion (in our case SUM) component-wise to the first argument across all processes
and stores the results in the second argument. The scalar products in the sec-
ond argument of the Allreduce functions in Lines 10 and 20 stand for variables
containing the corresponding scalar products. In these calls a vector and scalar
products are joined into a single memory segment to reduce communication.

Depending on the application requirements, two alternatives of data paral-
lelism can be suggested: On the one hand, a simple SIMD parallelisation of the
linear algebra operations can be performed using an appropriate BLAS imple-
mentation (MKL, OpenBLAS, etc) on shared memory systems. On the other
hand, we suggest to partition data using kd-trees and to decouple individual
problems as illustrated on Fig. 1. While we may loose smoothness of the solution
across the partition borders, the decomposition completed with orthogonalisa-
tion is known to adapt to the internal data manifolds [16] and improves the data
alignment important for additive models.

In this case of domain decomposition, communication in Lines 10 and 20
can be performed in three steps as illustrated on Fig. 2 to minimise the amount
of sent and received data. In the first step, we calculate the sum of large vec-
tors [sTj r

0
j , t

T
j sj , t

T
j tj , t

T
j r

0
j , tj ] and [vTj r

0
j ,vj ] among the processors that share

the same data partition (Fig. 2a). At this stage the size of the communicated
vectors is basically the number of points in the partition. In the second step,
only the scalar product results [sTj r

0
j , t

T
j sj , t

T
j tj , t

T
j r

0
j ] and [vTj r

0
j ] are reduced

between the root processes of individual partitions (Fig. 2b). While the commu-
nication between partitions is more expensive in distributed clusters, we need
to communicate only a small constant number of values, which is done very effi-
ciently in the common MPI implementations. In the last step, we broadcast the
updated values from the roots to all processes in the partitions (Fig. 2c).

105



Algorithm 1 Parallel BiCGStab Algorithm: code for processor j, 0 ≤ j ≤ n− 1

1: Input: Sj smoothing matrix, y target vector
2: Output: fj predictions of the function fj(x) at the data points
3: r0j = Sjy; rj = r0j
4: Allreduce([rj , r

T
j rj ], [rΣ , ρ

new],SUM)
5: α = ω = 1; ρold = β = ρnew

6: fj = tj = vj = vΣ = pj = pΣ = sj = sΣ = 0
7: while not converged do
8: if iteration > 0 then
9: ρold = ρnew

10: Allreduce([sTj r
0
j , t

T
j sj , t

T
j tj , t

T
j r

0
j , tj ], [s

T r0, tT s, tT t, tT r0, tΣ ], SUM)

11: ω = tT s
tT t

; ρnew = sT r0 − ωtT r0;β = ρnew

ρold
· α
ω

12: ρold = ρnew

13: rj = sj − ωtj ; rΣ = sΣ − ωtΣ
14: fj = fj + ωsj
15: check convergence on r
16: end if
17: pj = β(pj − ωvj) + rj
18: pΣ = β(pΣ − ωvΣ) + rΣ
19: vj = pj + Sj(pΣ − pj)
20: Allreduce

(
[vTj r

0
j ,vj ], [v

T r0,vΣ ], SUM
)

21: α = ρold/vT r0

22: sj = rj − αvj ; sΣ = rΣ − αvΣ
23: fj = fj + αpj
24: check convergence on s
25: tj = sj + Sj(sΣ − sj)
26: end while

1
1f

=

yS11

yS12

I

I

1
1S

2
1f
1
2f
2
2f

yS21

yS22

2
1S

1
2S

2
2S

(a) Task and data decomposition of
Equation (9).
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(b) Data partitioning and transforma-
tion with kd-trees.

Fig. 1: Parallelisation of the fitting algorithm using task and data decomposition
with kd-trees. On the left: Transformation of Equation (9). The coloured blocks
are computed simultaneously. On the right: Kd-tree based partitioning (solid
lines) of data with a low-dimensional manifold (black dots) and its orthogonali-
sation in individual partitions (red dots).
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+ +

(a) Step 1.

+

(b) Step 2.

copy copy

(c) Step 3.

Fig. 2: Three-steps communication model for Lines 10 and 20 of Algorithm 1
with data partitioning.

4 Results

In this section we show results that highlight the properties of the presented
fitting algorithm. We begin by comparing the convergence of different problem
formulations and fitting methods. Then we discuss the impact of data partition-
ing and normalisation as well as show strong scaling results of the distributed
parallel implementation of Algorithm 1.

To motivate the use of the smoothing matrix formulation and normal equa-
tions of the form (9) instead of (7), we begin by illustrating the convergence
speed of the same problem in these two formulations.

The synthetic dataset used in this experiment was generated from a linear
model with random coefficients and a small additive noise term. The dataset has
100 dimensions, whereas only 10 of them are informative.
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Fig. 3: Comparison of problem formulations (7) and (9) for minimisation of resid-
ual and error of a synthetic 100-dimensional dataset from model. Fitting of 1,000
data points was performed using regression cubic splines with λ = 10−7 and
dof=10.

Figure 3 illustrates the relative residual and prediction error norms. One can
see the superiority of the problem formulation (9) both by using the classical
backfitting algorithm with Gauss-Seidel iterations and by using the BiCGStab
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method. While the residual in the formulation (7) decreases, this does not con-
siderably affect the error of the resulting additive model, which is our main goal.

We observed that the convergence of the backfitting algorithm is usually
more stable but much slower. As BiCGStab does not directly minimise the error
norm, the spikes as seen on Fig. 3 are not uncommon, although the algorithm
would usually continue to converge after a spike.

The comparison between ADMM and BiCGStab is presented on Fig. 4. We
use the Sloan Digital Sky Survey dataset in Data Release 5 (SDSS) [17] to pre-
dict the photometric redshift of galaxies based on 6 cosmological parameters [2].
Both fitting methods are comparable, although the BiCGStab-based method ex-
hibits a faster convergence at the beginning. A parallel implementation of the
backfitting algorithm with red-black Gauss-Seidel iterations would not converge.

Fig. 4: Training er-
ror using ADMM and
BiCGStab for regression
on SDSS with 60,000
entries and random
subspace projection
ensemble with five
3-dimensional sparse
grids with level 3 and
λ = 10−6.  0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30

E
rr

or
 n

or
m

Iterations

ADMM ρ=1.0
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BiCGStab

As an example of a high-dimensional prediction problem we consider the year
prediction task on the million song dataset [18] with 90 features and 463,715
examples in the training dataset. We use the first 88 features which is more con-
venient to split across a different number of processors. We use linear models as
smoothing operators Sj , however the extension to other linear basis expansion
models is straightforwards.

As we described in the previous section, partitioning the dataset into sub-
domains and normalisation of individual partitions can improve the performance
and accelerate the convergence of additive models. Figure 5 compares the relative
residual norm and the mean prediction error for the same model with and with-
out the orthogonalisation step. With orthogonalisation the algorithm converges
after the first step.

Figure 6a illustrates the strong scaling of the algorithm for execution of 45
iterations using between 2 and 256 processors. There is a trade-off between the re-
duction of computation time and the increase of communication overhead (Fig.
6b). For up to 8 processors every process receives all examples, starting from
16 processors we introduce data partitioning, which is responsible for a jump in
communication overhead. An application of more computationally intensive basis

108



 6.6

 6.8

 7

 7.2

 7.4

 7.6

 7.8

 8

1 2 3 4 5 6 7 8 9 10
 1e-30

 1e-25

 1e-20

 1e-15

 1e-10

 1e-05

 1
M

ea
n 

ab
so

lu
te

 e
rr

or

R
el

at
iv

e 
re

si
du

al
 n

or
m

Iterations

Error w/o orthogonaliz.
Error w/ orthogonaliz.

Residual w/o orthogonaliz.
Residual w/ orthogonaliz.

Fig. 5: Comparison of
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norm and the mean
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nalisation step on the
million song dataset.

functions or smoothing kernels would improve the computation/communication
ratio.

5 Conclusion

We presented a new approach for fitting additive models using BiCGStab algo-
rithm that can be used for large-scale regression problems. While the convergence
of the BiCGStab method cannot be proved theoretically, it usually works well
in practice. It converges fast and can be efficiently parallelised for distributed
computer architecture.

The method relates to ADMM for distributed optimisation and shows com-
parable convergence speed. Our future work will include the development of
preconditioning methods to stabilise and accelerate the convergence.
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Fig. 6: Scaling properties of Algorithm 1. On the left: strong scaling results for
the million song dataset with 88 features and 463,715 examples. On the right: the
computation-to-communication relationship for different number of processors.
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Support Vector Machine Classification?
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Abstract. A major challenge in the classification of complex data, that
requires the combination of several processing steps, is the selection of the
optimal algorithms for preprocessing and classification. Here, we present
three steps to face this problem. First, we introduce a generalized model
for Support Vector Machine (SVM) variants which generates both unary
and online classifiers. This model improves the understanding of rela-
tionships between the variants which facilitates the choice and imple-
mentation of the classifier. Second, we propose the signal processing and
classification environment pySPACE which enables the systematic eval-
uation and comparison of algorithms. Third, we introduce an approach
called backtransformation which enables a visualization of the complete
processing chain in the the input data space and thereby allows for a
joint interpretation of preprocessing and classification to decode the de-
cision process. Finally, the benefit of combining all three approaches is
shown in an application on handwritten digit classification.

Keywords: pySPACE, support vector machine, relative margin, zero
separation approach, online learning, backtransformation

1 Introduction

Dealing with classification tasks of complex spatiotemporal data like the elec-
troencephalogram (EEG) one major issue lies in the generation of meaningful
features. This is due to the fact that the data often consists of a superposition of
a multitude of signals, together with dynamic, and observational noise. Hence,
the data processing usually requires the combination of different preprocessing
steps additionally to a classifier. In fact, the generation of good features is often
more important than the actual classification algorithm [1]. Consequently, in
many cases expert knowledge is required in order to specify the data processing.
Furthermore, there is a very large number of processing algorithms and the in-
terplay between them is often hard to grasp. Altogether, this makes it difficult

? This work was supported by the German Federal Ministry of Economics and Tech-
nology (BMWi, grants FKZ 50 RA 1012 and FKZ 50 RA 1011).

111



to automize the process of optimizing the data processing chain to get the best
preprocessing and classification. In this paper, we present three related tools to
make this process easier.

Due to the ever-growing number of classification algorithms, it is difficult to
decide which ones to consider. Knowledge about the relations between the clas-
sifiers facilitates the choice and implementation of classifiers. As such, instead
of further specializing existing classifiers we take a unifying view. Considering
only the variants of the SVM [2–5] we developed the following general concepts
building connections between these classifiers. The first concept, called relative
margin [6, 7], enables a connection of SVM and regularized Fisher’s linear dis-
criminant (RFLD) [8]. The second concept, the zero separation approach, allows
to define unary classifiers with the help of binary classifiers by taking the origin
as a second class. Third, the single iteration approach transfers batch learning
classifiers to online classifiers. If the batch algorithm is repeatedly iterating over
the training samples to update a linear classification function, an online learning
algorithm can be generated by performing this update only once with each in-
coming sample. Knowing these connections simplifies the implementation of the
algorithms and makes it possible to transfer extensions or modifications from
one algorithm to the other connected ones. Thus, it enables to build a classifier
that fits into the individual research aims.

Nevertheless, it still required to optimize the hyperparameters and the pre-
processing. Hence, it is necessary to have “an infrastructure that makes experi-
menting with many different learners, data sources, and learning problems easy
and efficient” [1]. To solve this problem, we developed the signal processing and
classification environment pySPACE [9]. It provides functionality for a system-
atic and automated comparison of numerous algorithms and parameterizations
in a signal processing chain. Additionally, pySPACE enables the visualization of
data, algorithms, and evaluation results in a common framework.

Optimizing the processing and knowing the relations between classifiers is
not sufficient. It is also important to understand the final processing model to
find out what lies behind the data. A first step is to visualize the data and
the single processing steps, but this might not be sufficient for a complete pic-
ture, especially when dimensionality reduction algorithms are used in the pre-
processing. This is quite often the case for high-dimensional and noisy data.
Hence, a representation of the entire processing chain including both classifica-
tion and preprocessing is required. Our approach to calculate this representation
is called backtransformation. It iteratively transforms the classification function
back through the signal processing chain to generate a representation in the
same format as the input data. This representation provides weights for each
part of the data to tell which components are relevant for the complete pro-
cessing and which parts are ignored. It can be directly visualized using classical
data visualization approaches as they are used for visualizations of images, EEG
and functional magnetic resonance imaging (fMRI) data. This visualization can
then be used to support the “close collaboration between machine learning ex-
perts and application domain ones” [1]. This can help to improve the processing
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and to generate new knowledge about the data. In some cases even new expert
knowledge might be generated.

In the following sections, we present our steps to improve and automatize the
process of designing a good processing chain for a classification problem (classifier
connections, pySPACE, backtransformation) including the related work in the
respective area. We conclude by giving an application example which combines
the three approaches in a unified approach.

2 Generalization: Classifier Connections

The classical SVM (C-SVM ) is motivated by the concept of maximizing the
distance between two hyperplanes, which separate positive from negative sam-
ples. This type of regularization is extended with a loss term, which allows for
samples on the opposite side of these hyperplanes. Furthermore, lifting the data
into a higher-dimensional space to make it linearly separable can be replaced
with kernels. Only the scalar product of two samples is substituted by a kernel
function. These powerful ideas and good performance results make the SVM
attractive for numerous variants. Some examples are: support vector regression
(SVR) [10], relative margin machines (RMMs) [6, 7], least squares SVM (LS-
SVM) [11], ν-SVM [12], one-class SVM (νoc-SVM) [13], support vector data
description (SVDD) [14], and passive-aggressive perceptrons (PAPs) [15]. Fur-
thermore, RFLD can be seen as an SVM variant, too [7, 8]. Some connections
between these classifiers are known. In the following sections, general concepts
for a unifying view are proposed to connect these classifiers and ease the pro-
cess of choosing a fitting classifier: relative margin, zero separation approach,
and single iteration approach. They can generate a large number of additional
variants (see Fig. 1).

2.1 Relative Margin

The relative margin concept [6] adds two additional (outer) parallel hyperplanes
to the C-SVM model with a relative distance (range R) to the decision hyper-
plane. Relative distance means that the real distance is R times 1

‖w‖ , when w is

the classification vector. Note, 2
‖w‖ is the distance between the aforementioned

maximum margin hyperplanes. If outliers at the new outer margin are treated in
the same way as in the inner margin, the model is called balanced relative mar-
gin machine (BRMM) [7]. This model is equivalent to SVR (with the dependent
variables Y = {−1, 1}) and connects SVM (R = ∞) and RFLD classification
(R = 1) [7]. A squared loss function, kernels, and implementation techniques can
be directly transferred from C-SVM to BRMM. BRMM has two hyperparame-
ters: the range R and the C-SVM complexity parameter C. For optimization it
is efficient to start with high values and iteratively decrease the values with a
pattern search algorithm [16]. To save resources, the warm start principle can
be used, to adapt the batch learning algorithms to the changed parameters [17].
With this parameter optimization, it is no longer necessary to choose between
SVM and RFLD.
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Fig. 1: Combining the approaches, introduced in Sec. 2: relative margin (vertical
arrows) to generate the balanced relative margin machine (BRMM) which is the
connection to the regularized Fisher’s linear discriminant (RFLD), single itera-
tion (horizontal arrows) to generate online classifiers like the passive-aggressive
perceptron (PAP), and the zero separation (perpendicular arrows) to generate
unary classifiers from binary ones.

2.2 Zero Separation Approach

In some applications, a second class is not of interest [18] or not enough examples
of this class can be given as in outlier and novelty detection [19]. Hence, unary
classifiers are required. In the zero separation approach a binary classifier is
transferred to an unary classifier. The origin (zero) is added as a sample of the
opposite (negative) class to the training data and the respective binary classifier
is applied [13, 20]. The application of this concept to ν-SVM results in νoc-
SVM, but it can be also applied to other classifiers like BRMM. Implementation
techniques of the original model can be directly used.

2.3 Single Iteration Approach

The C-SVM is traditionally solved with sequential minimal optimization [21]
as implemented in the LibSVM [22]. In the linear case, there are simplifica-
tions where the offset b in the decision function is omitted [17] or integrated
in the data space using homogenous coordinates [23, 24] as implemented in the
LIBLINEAR library [25]. Here, the solution algorithms iterate over single sam-
ples and update the classification function parameters w and b of the decision
function f(x) = sgn(〈w, x〉 + b) to the optimal values in relation to this sam-
ple. The single iteration approach creates a variant of a classification algorithm
by performing this update only once. This directly results in online learning
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algorithms. PAPs can be derived from C-SVM with this approach [7]. Online
learning can be used to speed up the training procedure with low processing
resources or to improve algorithms in terms of run time. In some cases it can
deliver comparable performance to the original algorithm [18, 26, 27]. It is even
possible to combine batch and online learning. First, the classifier is trained on
a larger dataset with a batch learning. Then by using the single iteration ap-
proach, the connected online learning algorithm can be adapted and used in the
application.

3 Optimization: pySPACE

There are several open source signal processing and machine learning libraries.
Some important libraries are NumPy [28], SciPy [29], Modular Toolkit for Data
Processing [30], Weka [31], LibSVM [22], and Scikit-learn [32]. pySPACE also
provides a plethora of algorithms as depicted in Fig. 2 and wraps several libraries.
For finding the best processing chain, access to numerous algorithms is helpful
but only to a certain extend. In contrast to other libraries, pySPACE can be seen
as a high-level framework which provides numerous methods for both classifica-
tion and preprocessing. It automates the data processing, including loading and
storing of the data, parallel processing of numerous different processing flows,
and evaluation of the results. The interfacing to the data and algorithms is based
on configuration files and not on scripts. The folder which contains all datasets
which shall be processed, the parameters and algorithms which should be varied,
and the list of algorithms which should be applied sequentially on the data, are
the only user-defined specifications. Hence, our configuration files allow scientists
with little programming experience to use the software. The streamlined format
of a data processing configuration can be easily shared and compared even in
publications. The present approach simplifies communication between scientists
and would not be possible in the same way with scripts or graphical user inter-
faces (GUIs). The evaluation can be performed on a cluster for fast processing
and provides a result tabular with numerous metrics [33] to analyze the differ-
ences between the compared algorithms and parameterizations. pySPACE was
originally developed to allow for automatic benchmarking and tuning of EEG
data processing chains [34–36]. A summary on respective evaluations is given
in [9] as well as more details on pySPACE.

4 Decoding: Backtransformation

To understand classifiers, it is not only important to know the relations be-
tween them, but also to interpret them when they are applied on data. This
understanding might lead to an improved processing chain or even to additional
information about the data or the process which generated the data. Hence, new
expert knowledge could be generated. A straightforward approach is to visualize
the weights of the linear classification function [37, 38]. An extension to nonlinear
classifiers has been suggested in [39] based on the derivative of the classification
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Fig. 2: Overview of the more than 100 processing nodes in pySPACE [9]. They are
arranged according to processing categories (package names) and subcategories.
The size of the boxes indicates the respective number of currently available
algorithms.

function. Unfortunately, a derivative has to be calculated for every input sample
which complicates the application and interpretation. The here proposed back-
transformation concept is the extension of these methods to a complete signal
processing chain, which ends with a (linear) classification function [40]. There-
fore, the respective weights are calculated iteratively beginning with the classifier
and going back through the processing chain. The final weights have the same
format as the input data and could be visualized in the same way. Backtrans-
formation is especially attractive when a dimensionality reduction algorithm is
applied in the signal processing chain. In this case, an interpretation of the pure
classifier weights is not informative without the weights of the dimensionality
reduction algorithm. For nonlinear algorithms, a general transformation cannot
be given anymore but it is possible to apply the chain rule and calculate the
derivative of the signal processing function in the sample of interest. So for each
input sample, a weight vector is obtained describing the local importance of each
data component. Additionally to the visualization of the processing chain, back-
transformation can be used to select features, to adapt a classifier to changing
preprocessing (co-adaptation), and to enable sparse classification related to the
input data (e.g., relevant time of the observed signal [35] or number of used
sensors [34]).

5 Application Example

As a proof of concept, a classification on handwritten digit data was conducted
(MNIST [41]). The classification of the digits 0, 1, and 2 is compared. First,
the data was reduced in dimensionality with a principal component analysis
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Fig. 3: Contour plots of backtransformation weights for handwritten digit clas-
sification with different classifiers: The white and black silhouettes display an
average contour of the original data (digits 0, 1, and 2). The colored contour
plots show the respective weights in the classification process. Negative weights
(blue) are important for the classification of the first class (black silhouette) and
positive weights (red) for the second class (white silhouette). Green weights are
close to zero and do not contribute to the classification process. For the unary
classification, the second class (white) was used.

(PCA) [42] from 784 to 40 and then normalized with a standardization (zero
mean and variance of one on the given training data). For classification, a
squared loss penalization of misclassifications was used to obtain a Gaussian
loss in RFLD. RFLD, SVM, the respective SVM perceptron, and νoc-SVM were
compared. Backtransformation can summarize all three processing steps and
provides the respective weights belonging to the input data. This is visualized in
Fig. 3. The classifiers itself do only determine the 40 weights of the normalized
principal components. These weights would be difficult to interpret, but with the
given backtransformation the weighting and its correspondence to the average
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shapes can be observed. As expected due to the model similarities (single itera-
tion approach) similar weight distributions were obtained for SVM and its online
learning variant (PAP). The visualizations of SVM and RFLD look similar due
to the connection with BRMM. However, for the distinction between the two
digits 0 and 2 some larger differences can be observed. The one class classifier
is different to the other classifiers as expected because it has been trained on a
single digit only. Hence, characteristics of the other class can be only marginally
observed due to the use of PCA which has been trained on both classes. This
can be seen in the second and third row: although trained on the digit 2 in both
cases, the classification results look different.

6 Conclusion

Optimizing the classification of spatiotemporal data is a difficult task which of-
ten requires expert knowledge. To ease this process especially for non-experts,
three approaches are shown in this paper to improve the design and understand-
ing of signal processing and classification with SVM variants. The pySPACE
framework was presented, to process the data, tune algorithms and their param-
eters, and to enable the communication between scientists. Several connections
between existing SVM variants have been shown and resulted in additional new
SVM variants for unary classification and online learning. Due to the connec-
tions, it is easier to understand differences and similarities between the classifier
variants and save time when implementing the classifiers. To finally interpret the
complete signal processing chain which ends with a classifier, the backtransfor-
mation approach was presented. In case of solely affine transformations, it results
in a representation of the processing chain, giving weights for each component
in the input domain, which can be directly visualized. All three approaches were
combined in an application on handwritten digit classification.

In future, the backtransformation concept should be implemented and tested
on nonlinear signal processing chains. All three introduced concepts should be
analyzed in further applications to prove their usefulness. The longterm goal is
to make pySPACE a tool for autonomous learning.
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Robust Optimization using Machine Learning
for Uncertainty Sets

Theja Tulabandhula and Cynthia Rudin
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Abstract. Our goal is to build robust optimization problems for making
decisions based on complex data from the past. In robust optimization
(RO) generally, the goal is to create a policy for decision-making that is
robust to our uncertainty about the future. In particular, we want our
policy to best handle the the worst possible situation that could arise, out
of an uncertainty set of possible situations. Classically, the uncertainty
set is simply chosen by the user, or it might be estimated in overly sim-
plistic ways with strong assumptions; whereas in this work, we learn the
uncertainty set from data collected in the past. The past data are drawn
randomly from an (unknown) possibly complicated high-dimensional dis-
tribution. We propose a new uncertainty set design and show how tools
from statistical learning theory can be employed to provide probabilistic
guarantees on the robustness of the policy.
Keywords: machine learning, uncertainty sets, robust optimization, data-
driven decision making, decision making under uncertainty.

1 Introduction

In this work, we consider a situation often faced by decision makers: a policy
needs to be created for the future that would be a best possible reaction to
the worst possible uncertain situation; this is a question of robust optimization.
In our case, the decision maker does not know what the worst situation might
be, and uses complex data to estimate the uncertainty set, which is the set of
uncertain future situations. Here we are interested in answering questions such
as: How might we construct a principled uncertainty set from these complex
data? Can we ensure that with high probability our policy will be robust to
whatever the future brings?

The uncertainty set U can be defined in many ways, and the central goal
of this work is how to model U from complex data from the past. The data
{(xi, yi)}ni=1 take the form of features and labels, with xi ∈ X ⊆ Rd and yi ∈ Y.
Some of the different ways uncertainty sets can be constructed are:
• Using a priori assumptions: We may have a priori knowledge about the range
of possible future situations. This knowledge can guide us in constructing the
uncertainty set U using, for instance, interval constraints.
• Using empirical statistics: We could create an uncertainty set using empirical
statistics of the labels ignoring the feature vectors altogether.
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2 Tulabandhula and Rudin

• Using linear regression to model complex data: Here, we use the complex past
data {(xi,yi)}ni=1, but we make strong (potentially incorrect) assumptions on
the probability distribution these data are drawn from.

• Using machine learning to model complex data, which is the topic of this
work: This setting is more general than linear regression and with much weaker
assumptions. We provide two principled ways to construct set U using historical
data. In both, we optimize prediction models over the data {(xi,yi)}ni=1, and use
them to construct uncertainty set U . U is used within the robust optimization
problem to construct π∗, and Theorem 1 provides a guarantee on its robustness;
this guarantee is derived using statistical learning theory. Theorem 1 describes
the guarantee for a generic class of prediction models and Theorem 2 specializes
the guarantee for a specific set of prediction models, namely, the conditional
quantile models. The only assumption made in this approach is that the data
are drawn i.i.d from an unknown source distribution. In particular, there is no
normality assumption. Let us give examples of how the two methods we propose
for this approach would work when U is constructed from a regression problem:

– For the first method, for every x̃ the uncertainty set U corresponds to the
domain of a indicator function on part of the set Y. It is 1 on most of the
training examples and is 0 farther away from them. Figure 1(a) shows an
illustration of this.

– For the second method, we estimate the 95th and 5th percentiles of y given
x̃ and set U to be all values of y ∈ Y between the two estimates. Figure 1(b)
illustrates this.

Being able to define uncertainty sets from predictive models is important:
the uncertainty sets can now be specialized to a given new situation x̃ ∈ X , and
this is true even if we have never seen x̃ before. For instance, when ordering daily
supplies yi for an ice cream parlor in Boston, an uncertainty set that depends
on the weather might be much smaller than one that does not; planning for
too much uncertainty in the weather can be too conservative and very costly: it
would not be wise to budget for the largest possible summer sales in the middle
of the winter.

Our approaches for constructing uncertainty sets are flexible, intuitive, easy
to understand from a practitioner’s point of view, and at the same time can
bring all the rich theoretical results of learning theory to justify the data-driven
methodology. Our uncertainty set designs can handle prediction models for clas-
sification, regression, ranking and other supervised learning problems. A main
theme of this work is that RO is a new context in which many learning theory
results naturally apply and can be directly used.

The closest work to ours is possibly that of [1], where the authors provide
a linear-regression-based robust decision making paradigm for portfolio alloca-
tion problems, where they assume a multivariate linear regression model for the
learning step. A big departure from this approach is that in our work, we are able
to design uncertainty sets for a general class of decision making problems while
making weak assumptions about the distributional aspects of the historical data.
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(a) Using optimized set function

(b) Using optimized conditional quantile func-
tions

Fig. 1. The empirical data {xi,yi}ni=1 is shown along with the boundaries created by
the proposed methods in each of the above figures. Evaluation of these boundaries at a
given x̃ produces an uncertainty set. In (a), a set function is optimized over the sample
and its evaluation at every x̃ is plotted. In (b), we use optimized conditional quantile
models to get the boundaries.
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We base our uncertainty set design on regularized empirical risk minimization,
which is quite a bit more general than regression.

2 Formulation

Let all the uncertain parameters of the decision problem be denoted by a vector
u ∈ Rm. Given a realization of u, let the (basic non-robust) decision making
problem be written as:

min
π
ρ(π,u) s.t. F (π,u) ∈ K. (1)

Here π ∈ Π ⊆ Rd1 is the decision vector and f : Π × Rm → R is the objective
function. Function F : Π × U → K and convex cone K ⊆ Rd2 describe the
constraints of the problem.

The robust version of the decision problem in Equation (1) is thus:

min
π

max
u∈U

f(π,u) s.t. F (π,u) ∈ K for all u ∈ U , (2)

where U ⊂ Rm represents the uncertainty set.
To solve Equation (2), we prescribe the following steps:

Step 1: Construct U using any of the four methods listed in this section.
Step 2: Obtain a robust solution, using either of the two options below:

Option 1: If U is a “nice” set, then there are natural ways [2] to transform it into
a relaxed set U ′ so that the robust optimization problem can be solved
to obtain a robust solution π∗. For instance, if U can be bounded using
a box or an ellipsoid, that box or ellipsoid can be U ′.

Option 2: If U is not a “nice” set, then sample L elements from U uniformly. Then
solve the sampled version of Equation (2) to obtain a robust solution
π∗.

We focus on Step 1. The goal is to ensure that the true realization of pa-
rameter u ∈ Rm belongs to set U with a high likelihood. Let u be equal to an
m-dimensional vector of unknown labels [ỹ1 . . . ỹm]T , where each label ỹj ∈ Y
can be predicted given a corresponding feature vector x̃j ∈ X . Thus m labels
{ỹj}mj=1, which can be forecasted from {x̃j}mj=1, feed into the decision problem
of Equation (2).
General prediction models:

Let x ∈ X ⊂ Rd represent a feature vector and y ∈ Y ⊆ R represent a label.
Consider a class of set functions I ∈ I, where I : X →MR, where MR is the set of
all measurable sets of R. Let us say that we have a procedure that picks a function
IAlg so that most of the labels of the training examples obey yi ∈ IAlg(xi), i =
1, ..., n. As long as IAlg belongs to a set of “simple” functions, we have a guarantee
on how well IAlg will generalize to new observations. Specifically, consider the
following empirical risk minimization procedure:

min
I∈I

1

n

n∑

i=1

1[yi /∈ I(xi)], (3)
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Robust Optimization using Machine Learning for Uncertainty Sets 5

where 1[·] is the indicator function. Let an optimal solution to the above problem
be IAlg. Then, define the uncertainty set U as:

U = Πm
j=1I

Alg(x̃j), (4)

where U is a product of m measurable sets.
The above setting is quite general. In particular, since the range of function

IAlg is MR, we can capture sets that are arbitrarily more complicated than
simple intervals. For instance, if Pyj |x̃j is bimodal, then for certain values of x̃j ,

IAlg(x̃j) can be the union of two disjoint intervals.
Conditional quantile models:

In this method, we specialize the generic function class I to the class of set
functions defined using conditional quantile models. We will estimate an upper
quantile of ỹ for each x̃, and a lower quantile of ỹ for each x̃. The uncertainty set
will be the interval between the two quantile estimates. This method is applicable
when our prediction task is a regression problem.

When y ∼ Py, the τ th quantile of y, denoted by µτ , is defined as µτ := inf{µ :
Py(y ≤ µ) = τ}. Here τ can vary between 0 and 1. In the special case when τ is
set to 0.5, this defines the median. Similarly, when (x, y) ∼ Px,y, the conditional
quantile µτ can be defined as a function from X to Y, µτ (x) := inf{µ : Py|x(y ≤
µ) = τ}.

In our setting, ỹj conditioned on x̃j is distributed according to Pỹj |x̃j . Thus,
given a value of τ ∈ [0, 1], Pỹj |x=x̃j (ỹj ≤ µτ (x̃j)) = τ where µτ (x) is the condi-
tional quantile defined earlier. Our method picks two values of τ , δp ≤ δq such
that:

Pỹj |x̃j (ỹj ≤ µδp(x̃j)) = δp, and Pỹj |x̃j (ỹj ≤ µδq (x̃j)) = δq.

For example, a typical value for the pair (δp, δq) can be (0.05, 0.95) which makes
µδp(x̃j) correspond to the 5% conditional quantile and µδq (x̃j) correspond to
the 95% conditional quantile. Given these two conditional quantiles, we have:

Pỹj |x̃j (µδp(x̃j) < ỹj ≤ µδq (x̃j)) = δq − δp.

Thus, the unknown future realization of ỹj belongs to the interval [µδp(x̃j), µδq (x̃j)]
with high probability if δp and δq are chosen appropriately.

Quantile regression can be seen as an empirical risk minimization algorithm
where the loss function is defined appropriately to obtain a conditional quan-
tile function. That is, we aim to obtain an estimator function β(x) of the true
conditional quantile function µτ (x) given a predefined quantile parameter τ . In
particular, the pinball loss (or newsvendor loss) function defined below is used.

lτ (β(x), y) =

{
τ · (y − β(x)) if y − β(x) ≥ 0,

(τ − 1) · (y − β(x)) otherwise.

Let lτP(β) = Ex,y[lτ (β(x), y)]. In our setting, we will let B0 be our hypothesis
class that we want to pick conditional quantile functions from.
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6 Tulabandhula and Rudin

Let the empirical risk minimization procedure using the pinball loss out-
put a conditional quantile model βAlg,τ when given the historical sample S =
{(xi, yi)}ni=1 of size n and a parameter τ . That is, let lτS(β) = 1

n

∑n
i=1 l

τ (β(xi), yi)
and βAlg,τ ∈ arg minβ∈B0

lτS(β). The following definition of U uses two empirical
conditional quantile functions with τ = δp and τ = δq respectively:

U = Πm
j=1

[
min

(
βAlg,δp(x̃j), βAlg,δq (x̃j)

)
,max

(
βAlg,δp(x̃j), βAlg,δq (x̃j)

)]
. (5)

Here U is again a product of m intervals, each one constructed so that it contains
the unknown ỹj with high probability.

3 Robustness guarantee using general prediction
functions

Consider the setting described in Section 2, where we have a class of general set
functions I. Let S := {(xi, yi)}ni=1 be the training data which are independent
and identically distributed. Let algorithm A represent a generic learning proce-
dure. That is, it takes S as an input and outputs IAlg. Since IAlg is a function
of sample S, we will show that the unknown ỹj belong to the interval IAlg(x̃j)
with high probability over S as long as the set of functions I from which IAlg

is picked is “simple”. Note that we do not assume anything about the source
distribution.

In order to state our result, we will define the following quantity known as
the empirical Rademacher average [3]. For a set F of functions, the empirical
Rademacher average is defined with respect to a given random sample S′ =
{zi}ni=1 as

RS′(F) = Eσ1,...,σn

[
1

n
sup
f∈F

∣∣∣∣∣
n∑

i=1

σif(zi)

∣∣∣∣∣

]
,

where for each i = 1, .., n, σi = ±1 with equal probability. The Rademacher
average is defined to be the expectation of the empirical Rademacher average
over the random sample S: R(H) = Ez1,...,zn [RS(H)]. The interpretation of
the Rademacher average is that it measures the ability of function class F to
fit noise, coming from the random σ′is. If the function class can fit noise well,
it is a highly complex class. The Rademacher average is one of many ways
to measure the richness of a function class, including covering numbers, fat-
shattering dimensions [4] and the Vapnik-Chervonenkis dimension [5].

Theorem 1. If U is defined as in Equation (4), then with probability at least
1− δ over training sample S, we have robustness guarantee

P{x̃j ,ỹj}mj=1

(
F (π∗, [ỹ1...ỹm]T ) ∈ K

)
≥




1− 1

n

n∑

i=1

1[yi /∈ IAlg(xi)]− 2R(l ◦ I)−

√
log 1

δ

2n



+



m

,
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where ε > 0 is a pre-determined constant, and
[
·
]
+

is shorthand for max(0, ·).

The result is a lower bound on the probability of infeasibility. This bound
depends on the performance of the data dependent set function IAlg. If IAlg is
such that its performance, measured in terms of 1

n

∑n
i=1 1[yi /∈ IAlg(xi)] is good

(i.e., lower in value), then the right hand side of the inequality increases, resulting
in a higher chance of feasibility. This probability of feasibility also depends on
the number of estimates m that enter the decision problem of Equation (2).
When n → ∞, the Rademacher term and the square root terms become zero
and the probability of feasibility depends on the asymptotic performance of IAlg

(which converges to I∗, the ‘best-in-class’ set function), as desired.

4 Robustness guarantee using conditional quantile
functions

Theorem 2. If U is defined as in Equation (5), then with probability at least
1− δ over training sample S, we have

P{x̃j ,ỹj}mj=1

(
F (π∗, [ỹ1...ỹm]T ) ∈ K

)
≥




 1

n

n∑

i=1

(
r−ε (yi − βAlg,δq (xi))− r+ε (yi − βAlg,δp(xi))

)
− 8

ε
R(B0)− 2

√
log 2

δ

2n



+



m

,

(6)

where ε > 0 is a pre-determined constant,
[
·
]
+

is shorthand for max(0, ·),

r−ε (z) := min
(

1,max
(
0,− zε

) )
and r+ε (z) := min

(
1,max

(
0, 1− z

ε

) )
.

The lower bound is a function of the empirical performance of the two con-
ditional quantile estimators and the Rademacher average of the hypothesis set.
As n → ∞, the Rademacher average and the square-root term tend to zero at

a rate O( 1√
n

). The term 1
n

∑n
i=1

(
r−ε (yi − βAlg,δq (xi)) − r+ε (yi − βAlg,δp(xi))

)

converges to Px,y(βAlg,δp(x) ≤ y ≤ βAlg,δq (x)).

5 Conclusion

In this paper, we considered a class of single-stage decision making problems
where the uncertainty is derived from statistical modeling. We present two prin-
cipled approaches to design uncertainty sets in the robust optimization frame-
work for these problems using statistical learning theory. In the first approach,
we use a general class of set functions and define the uncertainty set using them.
The second approach develops this idea further using the notion of quantiles to
define the uncertainty set. For both approaches, we give probabilistic guarantees
on the feasibility of the robust solutions thus obtained.
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Abstract. The trend to develop increasingly more intelligent systems
leads directly to a considerable demand for more and more computa-
tional power. However, in certain application domains, such as robotics,
there are several technical limitations, like restrictions regarding power
consumption and physical size, that make the use of powerful generic
processors unfeasible. One possibility to overcome this problem is the
usage of specialized hardware accelerators, which are designed for typi-
cal tasks in machine learning. In this paper, we propose an approach for
the rapid development of hardware accelerators that are based on the
heterogeneous dataflow computing paradigm. The developed techniques
are collected in a framework to provide a simple access to them. We
discuss different application areas and show first results in the field of
biosignal analysis that can be used for rehabilitation robotics.

Keywords: Robotics, Embedded Systems, FPGA, Hardware Accelera-
tion, Dataflow

1 Introduction

Machine learning techniques are widely used nowadays for a broad range of
applications. Depending on the specific application, they are employed either
on commodity hardware like desktop PCs or powerful high-end systems, like
clusters. The primary objective in these settings is to achieve a good accuracy
of the methods. Other objectives, like computational efficiency and memory
consumption are often regarded as less important or even entirely ignored.

However, with the increasing importance of portable and embedded sys-
tems and in the eras of Big Data and wearable computing, these formerly sec-
ondary objectives become more and more important. Especially in the case of

? This work was supported by the German Federal Ministry of Economics and Tech-
nology (BMWi, grants FKZ 50 RA 1012 and FKZ 50 RA 1011).
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autonomous systems and robotics, stringent requirements have to be satisfied: 1)
the available physical space is limited, which often prohibits the usage of off-the-
shelf components like desktop PCs, 2) the power consumption should be small
to reduce heat generation, allow the usage of small accumulators, and increase
the running time of the system, 3) often real time processing is needed, since the
systems have to work in a real world environment and have to keep up with the
environment.

1.1 The Problem of Generic Processors

These requirements make the usage of standard generic processors suboptimal.
The main purpose of generic processors is the execution of arbitrary software, but
not the high performance execution of specific algorithms. Consequently, they
are 1) either bulky and powerful, or small but weak, 2) waste to much energy for
the computational power they provide, 3) can not guarantee real time processing
themselves, but require real time operating systems. Fortunately, genericness is
not always required. Especially many algorithms in machine learning and signal
processing depend on a small set of operations like matrix-vector computations
(e.g., in neural networks, and support vector machines (SVMs)) or convolution
(e.g., in finite impulse response (FIR) filtering or edge detection in image pro-
cessing).

The above stated facts make it possible to use a dichotomy here: combine
a generic, but weak CPU for software tasks, with application specific hardware
accelerators for high performance computations. This pattern is widely used. Ex-
amples are the usage of specific accelerators, e.g., to reduce the energy consump-
tion in smart phones [1] or to perform machine learning tasks in the Microsoft
Kinect [2]. In these devices application specific integrated circuits (ASICs) are
used to fulfill a single, specific task. ASICs can not be transferred to other appli-
cations - every time the requirements change, a new ASIC has to be constructed.
This time consuming and expensive and therefore only reasonable if large quan-
tities are produced. Consequently, ASICs are inflexible, since it is impossible to
consider improvements of the underlying algorithm after the ASIC is manufac-
tured. This is not feasible for robotics or machine learning in mobile systems.

Another example is generic computing on graphics processing units (GPUs),
which is also often used in the machine learning community [3]. However, GPUs
have a high power consumption and are rarely available as individual chips to,
e.g., place them on printed circuit boards (PCBs) that have to be built to satisfy
the space constraints in robotic systems.

1.2 Field Programmable Gate Arrays

One solution approach to overcome these problems is based on Field Programmable
Gate Arrays (FPGAs). FPGAs consist of generic logic elements that can be con-
figured to form specific circuits to implement an algorithm in hardware. This has
several advantages for machine learning and robotics. First, the hardware im-
plementation of an algorithm can provide significant performance improvements
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while keeping the power consumption low. Second, since the configuration pro-
cess is very flexible, the disadvantages of ASICs regarding development costs do
not apply here. The algorithm can be modified if needed, since the circuit can
be changed by a reconfiguration of the FPGA.

Traditionally, FPGAs were used as simple, but flexible logic elements or
to provide other simple functionalities in electronic devices. However, in the
last couple of years the application areas were extended to other fields, such as
digital signal processing. Vendors integrate components into FPGAs to further
improve the usability in these application areas. Examples are DSP slices such as
the DSP48 slice in Xilinx FPGAs [4] to efficiently perform multiply-accumulate
operations, or memory elements such as block RAMs [5] to buffer data. A further
advantage is the inherent real time capability of the FPGA. It is possible to
design the circuit in such a way that it executes an algorithm in an exact number
of clock cycles to meet time constraints.

However, these advantages are not for free: a major problem of FPGAs is
the design complexity that requires careful attention of the FPGA designer. For
example, the designer has to decide for every arithmetic operation, if it should
be performed as a single or double precision floating or even fixed point opera-
tion. To save resources, the latter is preferred, but this can result in numerical
problems. Furthermore, the exact timing of all operations has to be specified
and the circuit must be made accessible for the software side. Up to now, this
design complexity has prevented FPGAs from being widely used in the machine
learning community.

1.3 FPGAs for Machine Learning

Often, FPGAs are still used as classical electronic components: to provide glue
logic or otherwise simple functionality like low-level communication. However,
there are various approaches that use FPGAs for increasingly more complex
tasks that range from simple signal processing to complex control architectures.

Furthermore, FPGA implementations for different popular machine learning
applications are presented in the literature, e.g. neural networks [6] or support
vector machines [7]. However, most approaches are singular, i.e., they conduct
just a single functionality, without any possibility of generalization or trans-
ferability to other applications. A generic framework for machine learning and
robotics has been proposed in [8]. However, due to its design, it is only suitable
for stationary high performance systems, but not for robotics. Furthermore, the
framework is only usable in a concrete hardware setup. In order to facilitate the
usage of FPGAs for the development of innovative machine learning-based appli-
cations in future robotic and mobile systems, the typical engineering problems
have to be hidden or simplified. In order to achieve this, the following points are
of importance:

1. The possibility to rapidly implement typical algorithms in the field of ma-
chine learning as hardware accelerators.

2. It should be possible to easily integrate third party implementations, so
called intellectual property (IP) cores, into the framework.
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3. One should be able to easily verify the functionality of the hardware accel-
erator.

4. Mechanisms to simplify the accessibility to the hardware accelerator from
the software side have to be provided.

5. Mechanisms to automatically optimize the design regarding required FPGA-
resources, given a set of defined constraints, are required.

In this paper, we discuss an approach to meet these requirements by proposing
the reconfigurable S ignal Processing And C lassification Environment (reSPACE ).
It is designed to reduce the complexity of development while retaining the most
important advantages especially in the field of machine learning and signal pro-
cessing, the later is especially relevant since often an appropriate feature ex-
traction is of high importance [9]). We illustrate the properties of reSPACE on
an example of biomedical signal processing, namely the realtime prediction of
movements based on single trial analysis of the human electroencephalogram.
In future, this can for example be used in the field of rehabilitation robotics
embedded in a wearable assistive robotic device.

2 Accelerator Hardware Architecture

The proposed framework is based on the static heterogeneous synchronous data-
flow computing paradigm. A dataflow-like concept is used in frameworks that are
popular for machine learning such as MDP [10], scikits-learn [11] or pySPACE [12].
Using reSPACE, it is easy to implement FPGA-based application specific data-
flow accelerators (DFAs) that speed up machine learning operations.

2.1 Heterogeneous Synchronous Dataflow Computing Paradigm

In the dataflow computing paradigm, data is streamed through a sequence of
algorithms and transformed on its way through them [13]. In the following, we
call this sequence a flow, and the implementations of the specific algorithms
nodes. Since it is possible to combine different nodes, we use a heterogeneous
dataflow paradigm. Since the structure is pre-defined for a specific application,
it is a static dataflow. However, in contrast to software dataflow concepts, the
data is shifted by one step through the flow on each clock tick of the system,
resulting in a synchronous design.

In reSPACE, we provide two different operating modes of the system. The
stream mode allows to process an ongoing stream of data. This mode is required
when the signal for processing originates directly from analog to digital con-
verters, e.g., force-torque sensors or electrodes for reading biosignals. The other
operating mode is designed to process separate windows of data, where the sam-
ples within a window are adjacent to each other. Examples are feature vectors
consisting of single feature elements or images that consist of pixels. We use a
model-based design approach here that is currently based on System Genera-
tor for DSP [14] or VHDL. To implement a complete system, we provide two
different alternatives.
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Either a library of predefined, parametrized nodes can be used, that contains
basic, widely used algorithms such as FIR and IIR filters, direct current offset
removal, standardization, etc., are provided as directly usable nodes that can be
directly arranged to build up the overall system. These nodes are generic and
can be instantiated using different sets of parameters. This allows the designer
to configure the overall system for, e.g., different number of channels or different
precision of the calculations.

The other opportunity is customizable circuit generation for matrix-multiply
based algorithms. We provide mechanisms to generate specific circuits for re-
source efficient parallel matrix operations. The multiply accumulate operations
are mapped to the DSP slices of the FPGA. This is done using a domain spe-
cific language that allows to specify a sequence of matrix vector operations and
choose a parallel or serial implementation. The parallel implementation uses a
minimal number of clock cycles but high amount of logic resources, whereas the
serial implementation is resource efficient but takes more cycles to run.

2.2 System Architecture

There are at least two possibilities for the integration of DFAs into a system:

Inside a System on Chip (SoC) In this setup, the DFA is connected to a
host CPU by some type of bus system, e.g., an AXI bus [15]. This setup is
applicable if the main system is controlled by software that is running on
the host CPU.

Direct access This setup is useful if certain processing should be performed in
a decentralized way. Applications are sensor data processing in proximity to
a sensor to, e.g., perform complex preprocessing or dimensionality reduction
of the data or to implement intelligent control algorithms.

In the SoC setup, the DFA has to be accessed from software. The software
is responsible to either transfer the data or results to and from the DFA or to
initialize the transfer if direct memory access is used. For this, device drivers are
required. The implementation of device drivers is a tedious and error prone task.
Therefore, reSPACE supports this task by using automatic driver and middle-
ware generation (see Sec. 3). In contrast, the direct access setup requires that
the DFA has to be accessed directly from other hardware components or from a
remote hardware system via low-level communication interfaces. Here, reSPACE
hides the technical details and allows to focus on the algorithm development.

2.3 Limitations

A general problem for FPGA-accelerated machine learning operations is the
amount of available memory. The amount of data, that can be stored in the
available block RAMs of even the current high-end FPGA devices, is in the
range of some dozens of MB [16]. Hence, the storage of large amounts of data
inside the FPGA itself is usually not feasible in practice, and external memory
is needed. Another algorithmic solution approach is the usage of incremental or
online learning methods.
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Fig. 1. Workflow for hardware accelerator integration. The processing-flow created by
Matlab and System Generator gets integrated into the SoC using the Xilinx toolchain.
Output products of the Xilinx toolchain are used for automatic driver and middleware
generation. Third party software (e.g., bootloader and kernel) can be added to, e.g.,
get a bootable medium.

3 Software Infrastructure and Integration

In the in SoC setup, the DFA is used to accelerate a specific software task.
Usually, an operating system, like Linux, is running on the host CPU. Hence,
to access the DFA from a software application, device drivers are needed that
interface with the DFAs and run as kernel modules.

3.1 Automatic Software Generation

In the given context, however, these drivers have a limited duty: the transfer of
the data from main memory to the DFA and collection of the results, while the
internal business logic of the driver is neglectable and can be implemented in
the user space. If the systems physical memory-map is known, it is possible, to
generate the required drivers fully automatically.

The same approach can be used to automatically generate additional inter-
face libraries to other higher-level languages, such as Python. Consequently, the
DFA can be directly used from popular machine learning frameworks with a
minimum of effort. Currently, we provide automatic generation of code to in-
tegrate reSPACE nodes into pySPACE [12] to allow the use of software-centric
mechanism like cross validation and performance evaluation. We refer to this
process as automatic driver and middleware generation. For details about this
software generation process, see Fig. 1.

3.2 Functional Verification

Still, the design and implementation of DFAs can be a complex and error-prone
task, due to the FPGA properties, like cycle-accurate timing and numerical
issues due to fixed-point computations that need to be solved. Accordingly, a
high effort is required in order to verify and ensure the functionality of the
DFAs. In reSPACE, we use a verification approach that is based on pySPACE. In
pySPACE, it is straightforward to generate test data and information regarding
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Fig. 2. Dataflow paradigm and verification for reSPACE generated flows. In simulation,
the flow can be verified on node level whereas the final implementation inside the FPGA
fabric is verified by comparing the final processed data with precomputed reference data
inside pySPACE.

the configuration of the specific nodes. The pySPACE flows can be augmented
with helper nodes that monitor and store all data persistently that is passed
through them.

Simulation Verification Our tools for hardware verification build on this func-
tionality of pySPACE. The intermediate data can be used directly to gen-
erate testbenches. These allow the verification of the hardware accelerator
in simulation and an in-depth investigation and analysis of any differences
between the pySPACE results and intermediate results of the dataflow hard-
ware accelerator. These might occur due to, e.g., fixed-point computations
that are usually employed in FPGAs.

Hardware Verification Besides the simulation based verification, reSPACE
also supports verification directly on the target system. There, we use a hi-
erarchical approach to verify the availability and functionality of the dataflow
hardware accelerator. First, it is tested if the Linux device file is accessible
and reachable from the software side. Second, a dedicated test code can be
read from the device to check if the dataflow hardware accelerator is avail-
able. Finally, the persistent test data is used to test the dataflow hardware
accelerator for full functionality. Therefore, the test data is used for stimu-
lation and comparison with the results of the hardware accelerator.

4 Applications

In this section, we outline how the proposed framework can be used for different
application areas. We briefly show results for online electroencephalogram (EEG)
analysis as a more extensive example.
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Fig. 3. Biosignal-augmented exoskeleton. The operator controls a robotic arm in a
virtual environment (right). The task is to move the end-effector of a robotic arm like
in an hot wire game through a labyrinth without touching it. For control, the operator
wears an exoskeleton that maps the position of the operator’s hand to the end-effector.
The operator’s EEG is continuously analyzed to detect upcoming movements that can
be used to adapt the control algorithms of the exoskeleton.

4.1 Biomedical Signal Processing for Teleoperation and
Rehabilitation Robotics

Performing teleoperation of robotic systems using current input devices like joy-
sticks is usually a demanding task. To simplify this, the exoskeletons can be
used as more intuitive command interfaces. The details of the investigatio have
been described in [17, 18] and are depicted in Fig. 3. To enhance the movability
of the exoskeleton, the joint control algorithms can be enhanced by integrating
predictions of upcoming movements based on the detection of movement-related
cortical potentials [19]. For the predictions, the EEG of the operator is contin-
uously analyzed by a movement prediction system, which performs a prediction
each 50 ms. EEG data is high dimensional (64 channels sampled at 5kHz), re-
quire a range of different signal processing and machine learning operations to
detect the to upcoming movements, and fast computations, since the processing
has to be finished before a movement is executed. Since the operator should be
able to move freely, the exoskeleton has to be be independent from stationary
hardware. In future, the exoskeleton will also be used as a rehabilitation sys-
tems [20]. Therefore, all computations should be performed in devices that are
embedded in the exoskeleton, were reSPACE can be used to map the operations
to FPGAs to provide the necessary computational power. For the detections, dif-
ferent signal processing operations have to be applied to the data online. We use
the following procedure: DC offset removal, anti-alias filtering and downsampling
to 20 Hz, spatial filtering, feature vector extraction, standardization, and classi-
fication using a passive-aggressive perceptron, whose parameter c was optimized
using a grid search. We realized this twice using pySPACE and reSPACE and
compare the classification and computation performance for both approaches.

The obtained results are shown in Table 1. It can be observed that there exist
no major differences regarding classification performance. However, by using the
DFA an ≈ 7× speedup is achieved.
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Table 1. Application oriented metrics for online and pseudo-online sessions in terms of
Balanced Accuracy (BA) and computation time for 10 recording sessions on 3 subjects.
The BA is defined as the mean of true positive and negative rates. The two different
devices were a mobile processor (MP, ARM Cortex A9, 666 Mhz) and a combined
mobile processor with DFA (running at 100 Mhz). All computations on the MP were
performed as double precision floating point operations, all computations in the DFA
used fixed point arithmetic. The reported computation times are the amount of time
that is required to process 1s of EEG data for the different processing platforms.

Performance Mobile CPU Performance Mobile CPU + DFA

BA (%) 76.012± 4.106 75.717± 4.018

Computation time (ms) 1199.943± 7.170 174.403± 5.872

4.2 Further Application Areas

There are various other application areas in machine learning, robotics and au-
tonomous systems that would gain a substantial benefit from FPGA-based ac-
celerators. Obvious examples are various image processing techniques, such as
SURF generation [21] and traffic sign detection [22] or enhancing the control of
robots [23].

5 Conclusion and Future Work

In this paper, we discussed the necessity, requirements and state of the art of
FPGA-based machine learning accelerators that should be employed in mobile
and robotic systems. As a solution to the current problems, we proposed our
framework reSPACE that supports the implementation of such accelerators. We
described the techniques that we use in reSPACE to simplify the design process
in order to allow algorithm developers to use FPGAs and to verify the resulting
hardware implementations in simulation or in the final system. In future, we
will enhance the framework to improve the usability further. First, we want
to transfer all components to pure VHDL implementations to achieve a higher
degree of vendor and third party independence, and to provide the framework
as open source to allow it to be used easily by machine learning and robotics
researchers.
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Abstract. In the stochastic multivariate multi-armed bandit, arms gen-
erate a vector of stochastic normal rewards, one per objective, instead
of a single scalar reward. As a result, there is not only one optimal arm,
but there is a set of optimal arms (Pareto front) using Pareto dominance
relation. The goal of an agent is to trade-off between exploration and ex-
ploitation. Exploration means finding the Pareto front and exploitation
means selecting fairly or evenly the optimal arms. We propose annealing-
Pareto algorithm that trades-off between exploration and exploitation
by using a decaying parameter εt in combination with Pareto domi-
nance relation. We compare experimentally Pareto-KG, Pareto-UCB1
and annealing-Pareto on multi-objective normal distributions and we
conclude that the annealing-Pareto is the best performing algorithm.

Keywords: Multi armed bandit problem, multi objective optimization,
annealing algorithm, exploration/exploitation.

1 Introduction

The Multi-Objective Multi-Armed Bandit (MOMAB) problem is a sequential
stochastic learning problem. At each time step t, an agent pulls one arm i from
an available arm setA and receives a reward vector rrri of the arm i withD variates
(or objectives) as feedback signal. The reward vector is drawn from a normal
probability distribution vectorN(µµµi,σσσ

2
i ), where µµµi is the true mean vector and σσσ2

i

is the covariance matrix parameters of the arm i. The reward vector rrri that the
agent receives from the arm i is independent from all other arms and independent
from the past reward vectors of the selected arm i. Moreover, the mean vector
of the arm i has independent D distributions, i.e. σσσ2 is a diagonal covariance
matrix. We assume that the true mean vector and covariance matrix of each
arm i are unknown parameters to the agent. Thus, by drawing each arm i, the
agent maintains estimations of the true mean vector and the diagonal covariance
matrix (or the variance vector) which are known as µ̂µµi and σ̂σσ2

i , respectively.
The MOMAB problem has a set of Pareto optimal arms (Pareto front) A∗,

that are incomparable, i.e. can not be classified using a designed partial order
relations. The agent has not to only find the optimal arms (exploring), to mini-
mize the total Pareto loss of not pulling the optimal arms, but also has to play
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them fairly (exploiting), to minimize the total unfairness loss. This problem is
known as the trade-off between exploration and exploitation in the multi-objective
optimization [1]. At each time step t, the Pareto loss (or Pareto regret) is the
distance between the set mean of Pareto optimal arms and the mean of the
selected arm. While, the unfairness loss (or unfairness regret) is the variance
in selecting the optimal arms [2]. Thus, the total Pareto regret and the total
unfairness regrets are the cumulative summation of the Pareto and unfairness
regret over t time steps, respectively. Since, the total unfairness regret grows
exponentially on the number of time steps and does not take into account the
total number of selecting optimal arms, we propose to compute the unfairness
regret using the entropy measure [3]. The entropy unfairness regret is a measure
of disarray (or disorder) on selecting the optimal arms in the Pareto front A∗.

The Pareto front A∗ can be found for example, by using Pareto dominance
relation (or Pareto partial order relation ) which finds the Pareto front A∗ by
optimizing directly the Multi-Objective (MO) space [4]. To solve the trade-off
between exploration and exploitation problem directly in the MO space, [2] used
Upper Confidence Bound (UCB1) [5] policy and [6] used Knowledge Gradient
(KG) [7] policy in the MOMAB problem. Both UCB1 and KG policies trade-off
between exploration and exploitation by adding an exploration term (or bound)
to the estimated mean vector µ̂µµi for each arm i in each objective (or dimension)
d, d ∈ D and select the optimal arms by using Pareto dominance relation. How-
ever, the exploration bound of UCB1 for arm i requires only knowledge about
that arm, while in case of KG it also requires knowledge about the other arms.

In this paper, we propose annealing-Pareto algorithm that detects the opti-
mal arms in the multi-objective space. The annealing-Pareto controls the trade-
off between exploration and exploitation by using a decaying parameter εt, εt ∈
(0, 1) in combination with the Pareto dominance relation. The decaying parame-
ter εt has a high value at the beginning of time step t to explore all the available
arms and increase the confidence in the estimated means, however, as the time
step t increases, the εt parameter decreases to exploit the arms that have maxi-
mum estimated mean. To keep track on all the optimal arms in the Pareto front
A∗, at each time step t, the annealing-Pareto uses Pareto dominance relation.

The rest of the paper is organized as follows: In Section 2 we introduce
the multivariate normal multi-armed bandit problem. In Section 3 we present
the MOMAB algorithms for normal multivariate distributions. In Section 4 we
present the performance measure in the MOMAB problem. In Section 5 we
introduce the annealing-Pareto algorithm in normal distribution. In Section 6,
we describe the experiments set up followed by experimental results. Finally, we
conclude and discuss future work.

2 Multi Objective Normal Distributions Multi Armed
Bandits Problem

Let us consider the MOMABs problems with |A| ≥ 2 arms and with indepen-
dent D objectives per arm. At each time step t, the agent selects one arm i
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and receives a reward vector rrri. The reward vector rrri is drawn from a cor-
responding normal probability distribution N(µµµi,σσσ

2
i ) with unknown mean pa-

rameter vector µµµi, µµµi = [µ1
i , · · · , µDi ]T and unknown variance parameter vector

σσσi, σσσi = [σ1
i , · · · , σDi ]T , where T is the transpose. Thus, by drawing each arm i,

the agent maintains estimate of the mean parameter vector µ̂µµi and the variance
σ̂σσ2
i parameter vector, and computes the number of times Ni arm i is drawn. The

agent updates the estimated mean µ̂di , the estimated variance σ̂2,d
i of the selected

arm i in each dimension d, d ∈ D and the number of times Ni+1 arm i has been
selected as follows [8]:

Ni+1 = Ni + 1, µ̂di+1 = (1− 1

Ni+1
) µ̂di +

1

Ni+1
rdt+1 (1)

σ̂2,d
i+1 =

Ni+1 − 2

Ni+1 − 1
σ̂2,d
i +

1

Ni+1
(rdt+1 − µ̂di )2 (2)

where µ̂di+1 is the updated estimated mean, and σ̂2,d
i+1 is the updated estimated

variance of the arm i in the dimension d and rdt+1 is the observed reward of the
arm i in the dimension d.

When the objectives are conflicting with one another then the mean com-
ponent µdi of arm i corresponding with objective d, d ∈ D, can be better than
the component µdj of another arm j but worse if we compare the components for

another objective d′: µdi > µdj but µd
′
i < µd

′
j for objectives d and d′, respectively.

The agent has a set of optimal arms (Pareto front) A∗ which can be found by
the Pareto dominance relation (or Pareto partial order relation).

The Pareto dominance relation finds the Pareto front A∗ directly in the
multi-objective MO space [4]. It uses the following relations between the mean
vectors of two arms. We use i and j to refer to the mean vector (estimated mean
vector or true mean vector) of arms i and j, respectively:

Arm i dominates or is better than j, i � j, if there exists at least one objective
d for which id � jd and for all other objectives d′ we have id

′ � jd
′
. Arm i is

incomparable with j, i ‖ j, if and only if there exists at least one objective d for
which id � jd and there exists another objective d′ for which id

′ ≺ jd′ . Arm i is
not dominated by j, j � i, if and only if there exists at least one objective d for
which jd ≺ id. This means that either i � j or i ‖ j.

Using the above relations, Pareto front A∗, A∗ ⊂ A be the set of arms that
are not dominated by all other arms. Moreover, the optimal arms in A∗ are
incomparable with each other.

3 Multi Objective Multi Armed Bandits Algorithms in
Normal Distribution

Pareto-UCB1 [2] and Pareto-KG [6] trade-off between exploration and exploita-
tion by combination one-objective, Multi-Armed Bandits (MAB) algorithms (or
policies) with Pareto dominance relation.
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3.1 Pareto-UCB1 in Normal distribution

Pareto-UCB1 is the extension of the UCB1 policy [5] to the MOMABs. Pareto-
UCB1 plays initially each arm i once. At each time step t, it estimates the mean
vector of each of the multivariate arms i, i.e. µ̂µµi = [µ̂1

i , · · · , µ̂Di ]T and adds to each
dimension d an upper confidence bound which represents the exploration bound
ExpBdi , ExpBdi =

√
(2 ln(t 4

√
D|A∗|))/Ni in the dimension d to trade-off between

exploration and exploitation, where D is the number of objectives, |A∗| is the
number of optimal arms, and Ni is the number of times arm i has been selected.
Pareto-UCB1 uses a Pareto dominance relation, Section 2 to find the Pareto-
UCB1 optimal arm set A∗UCB1. Thus, for all the non-optimal arms k /∈ A∗UCB1

there exists a Pareto optimal arm j ∈ A∗UCB1 that is not dominated by the arms
k, i.e. µ̂µµk + ExpBExpBExpBk � µ̂µµj + ExpBExpBExpBj , where ExpBExpBExpBj , ExpBExpBExpBj = [ExpB1

j , · · · ,ExpBDj ]
is the exploration bound vector of the arm j. Pareto-UCB1 selects uniformly
randomly one of the arms in the set A∗UCB1. The idea is to select most of the
times one of the optimal arm in the Pareto front, i ∈ A∗. An arm j /∈ A∗ that is
closer to the Pareto front according to metric measure is more selected than the
arm k /∈ A∗ that is far from A∗. After pulling the chosen arm i, Pareto-UCB1,
updates the estimated mean µ̂µµi vector, the number of times arm i is chosen Ni
and computes the Pareto and the unfairness regrets.

3.2 Pareto-KG in Normal distribution

Pareto-KG is the extension of the KG policy [7] to the MOMABs. Pareto-KG
plays each arm initial Steps. At each time step t, Pareto-KG calculates an ex-
ploration bound ExpBExpBExpBi, ExpBExpBExpBi = [ExpB1

i , · · · , ExpBDi ]T for each arm i. The
exploration bound of arm i depends on the estimated mean of all arms and on
the estimated standard deviation of the arm i. The exploration bound of arm i
for dimension d (ExpBdi ) is calculated as follows:

ExpBdi = (L− t) ∗ |A|D ∗ vdi , vdi = ˆ̄σdi x


−|

µ̂di − max
j 6=i, j∈A

µ̂dj

ˆ̄σdi
|


 , ∀d∈D (3)

where vdi is the index of an arm i for dimension d, L is the horizon of experiment
which is the total number of time steps, |A| is the total number of arms, and
ˆ̄σdi , ˆ̄σdi = σ̂d

i/
√
Ni is the root mean square error of an arm i for dimension d. After

computing the exploration bound for each arm, Pareto-KG sums the exploration
bound of arm a with the corresponding estimated mean. Thus, Pareto-KG selects
the optimal arms j that are not dominated by all other arms k, k ∈ |A| using
Pareto dominance relations, µ̂µµk + ExpBExpBExpBk � µ̂µµj + ExpBExpBExpBj , Section 2 Pareto-KG
chooses uniformly randomly one of the optimal arms in A∗KG, where A∗KG is the
Pareto-KG optimal arm set. After pulling the chosen arm i, Pareto-KG, updates
the estimated mean µ̂µµi, and the estimated variance σ̂σσ2

i vectors, the number of
times arm i is chosen Ni and computes the Pareto and the unfairness regrets.

Pareto-UCB1 and Pareto-KG control the trade-off between exploration and
exploitation by adding an exploration bound ExpBdi to the estimated mean µdi of
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each arm i in each objective d. The added exploration bound ExpBdi for the arm
i in the objective d by Pareto-KG depends on the estimated mean of all available
arms in the objective d and on the root mean square error ˆ̄σdi of the arm i, i.e.
each objective has different exploration bound. While, the added exploration
bound ExpBdi for the arm i in the dimension d by Pareto-UCB1 depends only
on the arm i, i.e. each objective has the same exploration bound.

4 Performance Measure

In the MOMAB, the agent has not only to find the Pareto front A∗ (or exploring
the optimal arms), but also has to play them fairly (or exploiting) the optimal
arms). As a result, there are two regret measures.

Pareto regret measure (RPareto) [2] measures the distance between a mean
vector of an arm i that is pulled at time step t and the Pareto front A∗. Pareto
regret RPareto is calculated by finding firstly the virtual distance dis∗. The vir-
tual distance dis∗ is defined as the minimum distance that is added to the mean
vector of the pulled arm µµµt at time step t in each dimension to create a virtual
mean vector µµµ∗t , µµµ

∗
t = µµµt + εεε∗ that is incomparable with all the arms in Pareto

set A∗, i.e. µµµ∗t ||µµµi ∀i∈A∗ . Where εεε∗ is a vector, εεε∗ = [dis∗,1, · · · , dis∗,D]T . Then,
the Pareto regret RPareto, RPareto = dis(µµµt,µµµ

∗
t ) = dis(εεε∗,000) is the distance be-

tween the mean vector of the virtual arm µµµ∗t and the mean vector of the pulled

arm µµµt at time step t, where dis, dis(µµµt,µµµ
∗
t ) = (

∑D
d=1(µ∗,dt − µdt )2)(1/2) is the

Euclidean distance. Thus, the regret of the Pareto front is 0 for optimal arms,
i.e. the mean of the optimal arm coincides itself.

The unfairness regret metric is the Shannon’s entropy measure [3] which is a
measure of disorder (or disarray) on the Pareto front A∗. The higher the entropy,
the higher the disorder. At time step t, the Shannon regret is RSE(t), RSE(t) =
− 1
N|A∗|(t)

∑
i∗∈A∗ pi∗(t) ln(pi∗(t)), where pi∗(t), pi∗(t) = Ni∗ (t)/N(t) is the proba-

bility of selecting an optimal arm i∗ at time step t, where Ni∗(t) is the number of
times the optimal arm i∗ has been selected and N(t) is the number of times all
arms i = 1, · · · , A have been selected at time step t, and N|A∗|(t) is the number
of times the optimal arms, i∗ = 1, · · · , |A∗| have been selected at time step t.

5 The Annealing-Pareto Algorithm

Annealing-Pareto algorithm has a specific mechanism to control the trade-off
between exploration and exploitation. It uses an exponential decay εt, εt =
εtdecay/(|A|D), where εdecay is the decay parameter and Pareto dominance relation.
At the beginning of time step t, εt has a high value to explore all the available
arms. As the time step t is increased, εt has a low value to exploit only the optimal
arms. To keep track on all the optimal arms in the Pareto front A∗, the annealing-
Pareto uses Pareto dominance relation. The decay parameter εdecay, εdecay ∈
(0, 1), when εdecay = 0 means the annealing-Pareto is a fully Pareto dominance
relation and when εdecay = 1 means the annealing-Pareto uses a fixed exponential
decay. The pseudocode of the annealing-Pareto is given in Algorithm 1.
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As initialization step, Algorithm 1 plays each arm i once to estimate the
corresponding mean vector µ̂µµi and the ε-Pareto optimal arm set A∗ε contains
all the arms in the arm set A. At each time step t, Algorithm 1 trades-off
between exploration and exploitation by using the decay parameter εdecay in
the exponential decay εt (step: 4). In each objective d, d ∈ D, the Algorithm 1
detects the optimal arm in that objective i∗,d, i∗,d = argmaxi=1,··· ,A µ̂

d
i , where µ̂di

is the estimated mean for arm i in the dimension d (step: 7). Algorithm 1 selects
all the arms in the objective d that have estimated mean between [µ̂∗,d−εt, µ̂∗,d]
and include them in the corresponding selected arm set Sd (steps: 8-12), where
µ̂∗,d, µ̂∗,d = maxi∈A µ̂di is the estimated mean of the optimal arm i∗,d in the
objective d. Algorithm 1 constructs the total selected arm set S(t) at time step
t by reunion of the selected arm set (step: 14). To keep track on the Pareto front
A∗, the Algorithm 1 uses Pareto dominance relation (step: 17) on the arms j
that are elements in the previous ε-Pareto optimal arm set A∗ε (t − 1) and are
not element in the total selected arm set S(t). If the arm j is not dominated by
all other arms, then this arm will be added to the total selected arm set S(t)
(step: 18). Algorithm 1 updates its ε-Pareto optimal arm set A∗ε (t) to be the total
selected arm set S(t) (step: 21). It pulls uniformly at random one of the arms
i∗ that is an element in the ε-Pareto optimal arm set A∗ε (t) (step: 22), observes
the corresponding reward vector rrri∗ and updates its estimated mean vector µ̂µµi∗
and the number of times Ni∗ arm i∗ is selected (step: 23). Then, it calculates
the Pareto and unfairness regrets. This procedure is repeated until the end of
playing L time steps which is the horizon of an experiment.

In Fig. (1), the dynamic of the algorithm is illustrated on 2-objective 5-armed
bandit. The optimal arms a∗1, a

∗
2, and a∗3 have the means µ∗1, µ

∗
2 and µ∗3, respec-

tively. The non-optimal arms a4, and a5 have the means µ4 and µ5, respectively.
At the beginning of time step, t = 1 the total selected arm set S(t) almost con-
tains all the arms (optimal and non-optimal arms), and the ε-Pareto optimal arm
set A∗ε contains all the arms as shown in subfigure a. As the time step increases,
S(t) contains some of the optimal arms, i.e. a∗2 as shown in subfigure b and c,
therefore, to maintain all the Pareto front, the algorithm constructs its updated
ε-Pareto optimal arm set A∗ε (t) to be the set that contains the non dominated
arms (a∗1 and a∗3) in the previous A∗ε (t− 1) and the arms in the set S(t).

6 Experiments

In this section, we experimentally compare Pareto-UCB1, Pareto-KG and annealing-
Pareto. The performance measures are: 1) the cumulative average regret at each
time step which are the average of M experiments. 2) the cumulative average
unfairness at each time step which are the average of M experiments.

The number of experiments M and the horizon of each experiment L are
1000. The rewards of each arm i in each objective d, d ∈ D are drawn from
normal distribution N(µµµi,σσσ

2
i,r) where µµµi = [µ1

i , · · · , µDi ]T is the unknown true

mean and σσσ2
i,r = [σ2,1

i,r , · · · , σ2,D
i,r ]T is the true unknown variance of the reward.

The standard deviation σdr for arms in each objective is set to 0.01, 0.1 or 1. For
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Algorithm 1 (Annealing-Pareto in Normal Distribution)

1. Input: Horizon of an experiment L; time step t; number of arms |A|; number of
objectives |D|; reward distribution r ∼ N(µµµ,σσσ2); selected arm set Sd(t) = { } ∀d;
decay parameter εdecay ∈ (0, 1).
2. Intialize: play each arm i initial steps to estimate its mean vector µ̂µµi =
[µ̂1
i , · · · ,µ̂Di ]T ; initial ε-Pareto front set A∗ε (0) = A.

3. For time step t = 1, · · · , L
4. Set the decay parameter εt = εtdecay/(|A||D|)
5. For objective d = 1, · · · , D
6. Sd(t) = {φ}
7. µ̂∗,d = max

1≤i≤A
µ̂di

8. For arm i = 1, · · · , A
9. If µ̂di ∈ [µ̂∗,d − εt, µ̂∗,d]
10. Sd(t)← {Sd(t), i}
11. End If
12. End For
13. End For
14. S(t)← S1(t) ∪ S2(t) ∪ · · · ∪ SD(t)
15. Sdifference ← A∗ε (t− 1)− S(t)
16. For arm j ∈ Sdifference do
17. If µ̂µµk � µ̂µµj , ∀k ∈ A
18. S(t)← S(t) ∪ j
19. End If
20. End For
21. A∗ε (t)← S(t)
22. Select an optimal arm i∗ uniformly, at random from A∗ε (t)
23. Observe: reward vector ri∗ , ri∗ = [r1i∗ , · · · , rDi∗ ]T ;Update: µ̂µµi∗ ; Ni∗ ← Ni∗ + 1
24. End For
25. Output: Unfairness regret; Pareto regret

a. At t = 1 b. At t > 1 c. At t >> 1

Fig. 1. The dynamic of the annealing-Pareto algorithm.

Pareto-UCB1 and the annealing-Pareto, each arm is played initially one time, i.e.
Initial = 1. Pareto-KG needs the estimated variance for each arm, σ̂σσ2

i , therefore,
each arm is played initially 2 times which is the minimum number to estimate
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Fig. 2. Non-convex and convex mean vector set. Left figure shows a non-convex set
with 2-objective, 6-armed. Right figure shows a convex set with 2-objective, 20-armed.

the variance. To get rid of tuning the parameter εdecay, we generate uniformly at
random the parameter εdecay ∈ (0, 1). Shannon entropy measures the unfairness
regret, Section 4. For example, for 2-objective, 6-armed with Pareto front A∗ =
{a∗1, a∗2, a∗3, a∗4}, where a∗i is an optimal arm, Experiment 1. If the number of
selecting each arm vector NNN by an algorithm is NNN = [30, 20, 20, 15, 10, 5]T and
the optimal number NNN∗ of selecting each arm is NNN∗ = [25, 25, 25, 25, 0, 0]T at
time step t = 100 without initial steps, then Shannon entropy is 0.0143.

Non-Convex Mean Vector Set;
Experiment 1. We use the same example in [2], since it is simple to understand
and the Pareto mean set contains values close to each others. The number of
arms |A| is 6, and the number of objectives |D| is 2. The true mean vector set
is (µµµ1 = [0.55, 0.5]T ,µµµ2 = [0.53, 0.51]T ,µµµ3 = [0.52, 0.54]T ,µµµ4 = [0.5, 0.57]T ,µµµ5 =
[0.51, 0.51]T ,µµµ6 = [0.5, 0.5]T ), the standard deviation for arms in each objective
is set to 0.1. Note that the Pareto front is A∗ = (a∗1, a

∗
2, a
∗
3, a
∗
4) where a∗i refers to

the optimal arm i∗. The suboptimal a5 is not dominated by the two optimal arms
a∗1 and a∗4, but a∗2 and a∗3 dominates a5 while a6 is dominated by all the other
mean vectors. Fig. 2 shows a set of 2-objective true mean with a non-convex set.

Experiment 2. We add extra 3 objectives and 14 arms in Experiment 1,
resulting in 5-objective, 20-armed, we add 3 optimal arms and 11 dominated
arms by all the arms in Pareto front A∗. Pareto front contains 7 optimal arms.
Fig. 3 gives the average cumulative Pareto and unfairness regret performances.
The y-axis is either the average of the cumulative Pareto or unfairness regret
performance. The x-axis is the time steps. Fig. 3 shows the performance of
algorithms. The annealing-Pareto is the best algorithm and Pareto-UCB1 is the
worst one. Pareto-KG has an intermediate performance.

Convex Mean Vector Set
Experiment 3. With number of objectives D equals 2, number of arms |A|
equals 20 and convex Pareto mean set, (µµµ1 = [.56, .491]T ,µµµ2 = [.55, .51]T ,µµµ3 =
[.54, .527]T ,µµµ4 = [.535, .535]T ,µµµ5 = [.525, .555]T ,µµµ6 = [.523, .557]T ,µµµ7 = [.515,
.56]T ,µµµ8 = [.505, .567]T ,µµµ9 = [.5, .57]T ,µµµ10 = [.497, .572]T ,µµµ11 = [.498, .567]T ,
µµµ12 = [.501, .56]T ,µµµ13 = [.505, .495]T ,µµµ14 = [.508, .555]T ,µµµ15 = [.51, .52]T ,µµµ16 =
[.515, .525]T ,µµµ17 = [.52, .55]T ,µµµ18 = [.53, .53]T ,µµµ19 = [.54, .52]T ,µµµ20 = [.54, .51]T ),
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Fig. 3. Performance comparison on 5-objective, 20-armed with non-convex mean vector
set. Left sub-figure shows the average cumulative Pareto regret performance. Right sub-
figure shows the average cumulative unfairness regret performance.

the standard deviation for arms in each objective is set to 0.1. The Pareto front
A∗ contains 10 optimal arms, A∗ = (a∗1, a

∗
2, a
∗
3, a
∗
4, a
∗
5, a
∗
6, a
∗
7, a
∗
8, a

∗
9, a
∗
10). Fig. 2

shows a set of 2-objective convex true mean vector set.

Experiment 4. We add extra 3 objectives and 10 arms in Experiment 3, re-
sulting in 5-objective, 20-armed, we add dominated arms by all the arms in A∗.
Pareto front A∗ still contains 10 optimal arms. Fig. 4 gives the average cumula-
tive Pareto and unfairness regrets and shows the annealing-Pareto performance
is the best algorithm, and the Pareto-UCB1 performance is the worst one accord-
ing to the Pareto regret performance, while according to the unfairness regret
performance Pareto-KG is the worst algorithm.
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Fig. 4. Performance comparison on 5-objective, 20-armed with convex mean vector
set. Left sub-figure shows the average cumulative Pareto regret performance. Right
sub-figure shows the average cumulative unfairness regret performance.

From the above experiments, we see that the annealing-Pareto algorithm is
the best one according to both the unfairness and Pareto regrets. The intuition is
that the annealing-Pareto does not have an exploration term that decreases fast
to 0 after time steps to control the trade-off between exploration and exploita-
tion. Instead, the annealing-Pareto has a decay parameter that decreases slowly
to 0, this means that the annealing-Pareto explores widely the available arms.
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For convex mean vector set, Pareto-KG outperforms Pareto-UCB1 according to
the Pareto and unfairness regrets.While, for non-convex mean vector set, Pareto-
KG outperforms Pareto-UCB1 according to the Pareto regret and Pareto-UCB1
outperforms Pareto-KG according to the unfairness regret. The intuition is the
exploration term. The exploration term for UCB1 depends on the time step t
and the number of times Ni arm i is pulled and it will be high if the arm i is
less selected. Thus, UCB1 plays fairly the optimal arms because it selects the
optimal arms that have either larger estimated mean or larger exploration term.
In contrast, the exploration term for KG policy depends on the estimated mean
of all other arms and on the estimated variance of arm i. The exploration term
is large if the variance of arm i is low, or if the estimated mean of arm i exceeds
in the future. Thus, KG selects more efficiently the optimal arms.

7 Conclusion

We introduced the normal MOMAB, Pareto dominance relation, the perfor-
mance measure in the MOMAB, Pareto-KG and Pareto-UCB1. We proposed
the annealing-Pareto algorithm. We proposed using the entropy measure as a
performance measure in the MOMAB. We studied empirically the trade-off be-
tween exploration and exploitation (or the trade-off for short) in the normal
MOMAB. Pareto-KG and Pareto-UCB1 trade-off by using KG and UCB1 policy,
respectively. While, the annealing-Pareto trades-off by using a decay parameter.
Finally, we compared Pareto-KG, Pareto-UCB1, and the annealing-Pareto and
concluded that: the annealing-Pareto is the best algorithm according to both
the Pareto and the unfairness regret performance measures.
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Abstract. With the fast development of information technology and
increasingly prominent environmental problems, building comfort and
energy management become the major tasks for an intelligent residen-
tial building system. This paper identifies the system requirements of
Smart Buildings, analyzes the problems that need to be solved and how
Reinforcement Learning is suitable for dealing with them. It also pro-
poses to represent parts of Smart Buildings as Cyber-Physical Systems.
Although the global goal is to model and manage a complex and whole
system of a Smart Building, since the work is in progress, in this paper
we mainly focus on how Reinforcement Learning technique is good at
controlling subsystems, specifically the Ventilation System. The exper-
imental results show the advantages of our system compared with the
widely used baselines: On/Off control and PI control approaches.

Keywords: energy, smart buildings, reinforcement learning, multi-agent
system, cyber-physical system.

1 Introduction

According to United Nations Environment Programme [1], buildings use about
40% of global energy, 25% of global water, 40% of global resources, and they emit
approximately 1/3 of Green House Gas (GHG) emissions. With the development
of human society, environmental issues have drawn more and more attention. In
this background, buildings can offer a great potential for achieving significant
GHG emission reductions in different countries. Furthermore, energy consump-
tion in buildings can be reduced by using advanced technologies and manage-
ment. On the other hand, people spend greater part of their time in buildings. As
the quality of life in home is increasingly considered as of paramount importance,
many people constantly seek to improve comfort in their living spaces. Mean-
while, the popularization of the concept of home office makes the productivity in
smart buildings economically significant. How to manage buildings in a proper
way to improve energy efficiency and comfort level while reducing pollution at
the same time is therefore a subject of uttermost importance.
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Corresponding to the increasing demands for environment, comfort, energy,
and productivity, advanced methods are applied for improving comfort condi-
tions in smart buildings thanks to the dramatically rapid development of infor-
mation technologies. Widespread utilization of computing devices, powerful but
low cost sensors and actuators, and ubiquitous networks make the intelligent
control more easily come true. Actually the implementation of smart buildings
involves controls of different subsystems and devices. Hence itself is a system of
systems.

Based on this context, Cyber-Physical System (CPS) can be used to model
this complex system, which is integrations of computation, networking and phys-
ical processes, in which embedded computers and networks monitor and control
the physical processes with feedback loops where physical processes affect compu-
tations and vice versa [2]. CPSs integrate the dynamics of the physical processes
with those of the software and networking, providing abstractions and modelling,
design, and analysis techniques for the integrated whole. Modelling and control-
ling smart buildings as CPSs can bring many advantages: different subsystems
such as heating, ventilation and air-conditioning (HVAC) can communicate with
other electrical devices to form an intelligent whole; more information can be
integrated and shared, for example, real-time and forecasting local weather data
from observatories can be used through networks to assist HVAC system to
make better decisions or even to help power distributors to balance loads; the
system can be more robust and the cost can be reduced by separating sensors
and actuators from traditional electrical devices.

In this work, we try to reformulate smart buildings as CPSs and capitalise on
Reinforcement Learning (RL) and Multi-Agent techniques to control the whole
system. Due to the work being in progress, in this paper we mainly focus on
modeling and controlling subsystems, specifically the ventilation system. Our
contributions is threefold: firstly we identify the system requirements for smart
buildings; then inspired from [3] we propose the method to model ventilation
system as CPS; finally RL is proposed to control the ventilation system, its
performance is analyzed and compared with PI control and On/Off control. The
rest of this paper is organized as follows: Section 2 presents the related work.
Section 3 analyzes system requirements for smart buildings. Section 4 focuses on
RL and its feasibility. Section 5 investigates ventilation system and models it as
CPS. Experimental results are presented and analyzed in Section 6. Finally we
conclude in Section 7.

2 Related Work

Research is increasing in the emerging field of smart buildings. Kleissl et al.
[4] regard smart buildings as CPS, and by examining different buildings and
their energy use in detail they point out opportunities available to improve en-
ergy efficiency operation through various strategies from lighting to computing.
However, the requirements for developing smart buildings and the architecture
of the system have not been analysed and proposed. In order to improve com-
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fort in buildings, authors of [5] propose an adaptive smart home system named
CASAS, which utilizes machine learning techniques to discover patterns in oc-
cupant’s daily activities and to generate automation policies that mimic these
patterns. Although the user’s explicit or implicit wishes can be adapted, the
energy consumption of the building has not been taken into account. Actually
energy efficiency is one of the key factors that need to be considered when design-
ing smart buildings, since more comfort usually comes at the expense of higher
energy consumption. Therefore these two conflicting points should be carefully
balanced. In [3] and [6], thermal comfort and indoor air quality in buildings
are improved separately by intelligent control methods while less energy is used
compared with conventional controllers. However, a smart building is a system
of systems, and only individual subsystems being well controlled is not enough.
Hence, in our work we undertake the analysis and design from a global view,
while implementing the system by a bottom-up approach.

Both to make subsystems have the ability to take intelligent decisions, and
the global system learn good strategies to schedule and coordinate these subsys-
tems, RL brings advantageous properties. Up to now, RL has been successfully
used on a wide range of problems. Peters et al. [7] propose an intelligent decen-
tralized control mechanism, which is able to operate in different Smart Electricity
Markets, by using autonomous broker agents. These agents can accommodate
arbitrary economic signals and learn efficiently over the large state spaces re-
sulting from the signals with function approximation. After learning, they are
capable of deriving long-term, profit-maximizing policies. Li et al. [8] present
an improved MAXQ [9] method to minimize electricity costs on the premise of
satisfying the power balance and generation limit of units in a microgrid and the
proposed multi-agent architecture is beneficial to handle the problem of ”curse of
dimensionality” and speed up learning in the unknown large-scale world. Other
works focusing on robotic and traffic light control can be found in [10,11] and
[12,13] respectively.

3 System Requirements for Smart Buildings

Actually a Smart building is a system of systems. It requires to think about
different subsystems and devices as an integrated whole that has a global objec-
tive. Different functional parts of this whole can be modelled as agents so that
the individual objectives and the global objective can be reached by cooperating,
coordinating, and negotiating among these agents. Therefore, the smart building
can be regarded as a multi-agent problem. On the other hand, improving the
comfort of a single building is important whereas reducing energy consumption
so as to reduce electric bill, balancing power distribution, and shifting peak load
are also vital. So the desired strategy is to reasonably balance comfort and en-
ergy consumption not only in one building but also among different buildings of
a district. In order to model this complex system, we first need to analyse the
requirements for smart buildings.
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3.1 Multi-Authority and Multi-Level

A smart building comprises various agents, such as air-conditioning agent, venti-
lation agent, water-heating agent and so on. This forms multi-authority of lower
level. If there does not exist communication between agents, each of them can
be considered as selfish, that is each of them try to maximize its individual
goal regardless of the states of other agents and the global objective. From a
higher viewpoint, each smart building can be regarded as an independent agent
and some of these agents constitute a smart district, in which smart buildings
can improve their comfort, balance total grid load and reduce energy consump-
tion through communication, cooperation and coordination. This is multi-level
requirement for smart buildings.

3.2 Multi-Objective

Authorities of different levels want to reach their own objectives and global ob-
jectives of higher level. For instance, thermal comfort, indoor air quality, and
visual comfort are three basic factors which determine the comfort conditions
in buildings [14], and relative devices treat improving these comforts as their
individual objective, while they also need to consider global objective: reduc-
ing energy consumption and peak load shifting. Individual objective and global
objective are often conflicting: improving comfort often means consuming more
energy.

3.3 Heterogeneity

Heterogeneity in smart buildings mainly comes from three aspects. First, the
devices in buildings are diverse with different control strategies. How to inte-
grate them together and have a proper management is important. Moreover,
multi-level structure, that has been presented in Section 3.1, brings difficulties
in designing the system. In addition, different occupants have different user pref-
erences, including comfort definition, device type, and their physical activities in
buildings. Electrical devices in buildings are heterogeneous. In general, they can
be divided into two categories: power consuming devices and power producing
devices. However, in [15] these two categories are unified by a new word called
prosumer which means either producing or consuming. By convention, a positive
prosumption represents a production and a negative one a consumption. But in
order to analyse device properties we still use former notions.

Power Consuming Devices In this category, devices consume power when
they are working and they are divided as negotiable and non-negotiable. Nego-
tiable devices are these who can reduce working power, called power-negotiable
(e.g. intelligent air-conditioning, intelligent ventilation system), so as to reduce
comfort within a range that occupants could accept; who can postpone schem-
ing start-time, named time-negotiable (e.g. washing machine), in order to shift
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peak load; who can both reduce working power and postpone scheming start-
time, called power-time-negotiable (e.g. water heating system, storage system),
to provide a flexible service. Non-negotiable devices are inflexible, that means
when people turn them on, they always consume power as required (e.g. daylight
lamp, TV, computer).

Power Producing Devices In smart buildings, there often exist power pro-
ducing devices to make full use of green energy and help decrease the load on
main grids. Some of these devices can provide constant power like fuel cells, micro
turbines, and storage systems, while the others can merely offer variable outputs,
which strongly depend on weather conditions, such as photovoltaic panels and
wind turbines. At this time, storage systems are required for these devices to play
a role as buffers, which can achieve constant outputs to protect the micro-grid.

3.4 Scalability

The desired system should be scalable. In a single building, devices often plug
in and out, and in a district, new buildings may participate. This requires the
architecture we design have the ability of scalability and the decision-making
algorithms need to be decentralized.

3.5 Incremental Change

Although smart buildings can bring numerous benefits, traditional buildings
with traditional devices already exit. Hence any changes introduced in the future
should be reasonably gradual so as not to disturb and damage the working system
and its service. This requires the designing system can tolerate and integrate the
exiting traditional devices.

4 Reinforcement Learning

Compared with traditional control, CPSs enable consider more inputs to better
realize the dynamic of the physical world so as to support decision making. For
example, nowadays most air-conditionings use On/Off and PI control. On/Off
control regulates temperature by using a compressor that is periodically either
working at maximum capacity or switched off entirely, whereas PI control has
a variable-frequency drive that incorporates an adjustable electrical inverter to
control the speed of the motor and thus the compressor and cooling output.
The inputs for On/Off and PI control are only indoor temperature. However, for
CPSs they can capitalize on more inputs like occupant number, since bodies are
also heat source that can increase indoor temperature. In order to benefit from
CPSs, it seems that traditional control methods, which are often straightforward,
are not enough.
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Hence, we advocate the use of RL to control smart buildings, which offers
a suitable set of techniques to address these challenges. The classical reinforce-
ment learning framework is based on Markov Decision Processes (MDPs). An
MDP can be depicted by a tuple (X,U, f, ρ, γ). X is the set of states it can
perceive, U is the set of possible actions it can perform in these states, f
is the state transition function, ρ is the reward function that evaluates the
immediate effect of an action, and γ is the discount factor. The goal of RL
is to find an optimal policy, h : X → U , that maximizes the return from
any initial state x0: Rh(x0) =

∑∞
k=0 γ

kρ(xk, h(xk)), where γ ∈ [0, 1) and k
is discrete time step. The discount factor can be interpreted intuitively as a
measure of how ”far-sighted” the controller is on its rewards, or as a way of
taking into account increasing uncertainty about future rewards [16]. In or-
der to characterize policies, state-action value function (Q-function) is used,
Qh : X × U → R. After finding an optimal Q-function Q∗(x, u), optimal policy
h∗(x) can be obtained greedily by h∗(x) ∈ arg maxuQ

∗(x, u). In this work, the
model-free online algorithm Q-learning [17] is used to update the Q-function.
The choice of this algorithm is motivated by the fact that no explicit model
of the dynamics of a smart building is available, due to the great amount
of involved devices. Moreover, some inputs like the number of occupants pre-
sented in the room are random. Hence, considering f as a stochastic function
is more realistic. Q-learning can work as a sample-based algorithm to deal with
stochastic approximation procedure. The Q-function is updated online at ev-
ery new sample of the form (xk, uk, xk+1, rk+1), using the following equation:
Qk+1(xk, uk) ← Qk(xk, uk) + αk[rk+1 + γmaxu′ Qk(xk+1, u

′) − Qk(xk, uk)]. In
subsystems, RL can be utilized as intelligent controller to control devices such
as heating and ventilating systems. In global system, RL can optimize the coor-
dination of subsystems.

5 Ventilation Controlling Subsystem

In this section, we mainly focus on the ventilation subsystem. A thermal sub-
system has been investigated in our previous work [18].

The ventilation controlling system is used to improve indoor air quality. In
most cases, people can obtain a good indoor air quality by simply opening win-
dows. However, in some situations, we need mechanical ventilating devices to
exchange indoor air, for example, when there are many visitors in the room,
when outdoor air speed is close to zero, when there is no window in the room,
and for people who live in modern skyscrapers in which opening windows will
raise the possibility of hidden danger and hence is often forbidden.

The indoor air quality is mainly decided by CO2 concentration. People gen-
erate CO2 and consume oxygen, at a rate that depends primarily on their body
size and their level of physical activity[19]. The rate of oxygen consumption in
L/s of a person is given as

VO2
=

0.00276ADM

(0.23RQ+ 0.77)
(1)
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where RQ is the respiratory quotient (the relative volumetric rates of carbon
dioxide produced to oxygen consumed). M is the level of physical activity or the
metabolic rate per unit of surface area in met (1 met = 58.2 W/m2). AD is the
DuBois surface area in m2, which can be estimated by the following equation

AD = 0.203H0.725W 0.425 (2)

where H is the body height in meter and W is the body mass in kg. For an
average size adult, AD is about 1.8m2.

The value of RQ depends on diet, the level of physical activity and the
physical condition of the person. It is equal to 0.83 for an average size adult
engaged in light or sedentary activities (about 1 met), and increases to a value of
about 1 for heavy physical activity (about 5 met). The carbon dioxide generation
rate in L/s of an individual is

VCO2
= VO2

×RQ (3)

Steady state CO2 concentration can be determined for a given ventilation
rate based on a single zone mass balance analysis. Assuming that in a room
there are N adults and the room is equipped with an electric fan. The mass
balance of CO2 in the room can be expressed as follows:

V
dC

dt
× 10−6 = G× 10−3 +Q× (Cout − C)× 10−6 (4)

where V is building volume in m3, C is indoor CO2 concentration in ppm(v),
Cout is outdoor CO2 concentration in ppm(v), t is time in second, G is indoor
CO2 generation rate in L/s, and Q is ventilation rate in m3/s. Generally an
acceptable value of indoor CO2 concentration varies from 600 ppm(v) to 1000
ppm(v), and 800 ppm(v) is set as a reasonable setpoint for a good indoor air
quality.

Figure 1 depicts the architecture of the CPS for ventilation control. In this
figure, there are three parts: Physical World, Network, and Cyber World. Phys-
ical World contains Sensor Domain and Actuator Domain. Different indoor and
outdoor parameters, such as air speed, CO2 concentration, occupant number,
metabolic rate, etc., can be observed by different sensors and these data are
transmitted to Cyber World though the network. In Cyber World, we use RL
because it can deal with the random appearance of occupants. With this algo-
rithm, the captured data are used to decide the current state and the reward of
last time. RL can make good decisions automatically by trial and error without
the need of a specific model of the problem. Based on this technique multiple
devices in Physical World are controlled by the actuating signals from Cyber
World.

6 Experiments

The goal of this work is to control the mechanical ventilation system to keep
the CO2 concentration at the setpoint while reduce energy consumption. Specif-
ically, according to the present information of occupants’ number and indoor
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Fig. 1. Cyber-Physical System for ventilation control

CO2 concentration, the system should adjust the electric fan’s speed to control
the ventilation rate. We assume the maximum number of occupants is 10 with
average size and doing light or sedentary activities in a house of 100m2×3m. The
CO2 concentration in [750, 1200] is discretized into 450 states, plus 2 over bound-
ary states. Therefore the total number of state is 452×11 = 4972. The mechanical
ventilation system used has a maximum ventilation rate of 0.25m3/s with power
of 40 W and can take 13 actions: {0,4,8,12,16,20,25,30,40,50,60,70,80,100}% of

the maximum ventilation rate. The reward function is rk+1 = e−
(Ck−800)2

20000 ×8−8,
where Ck is the indoor CO2 concentration at time step k. Due to the slow vari-
ation property of CO2 concentration, the time step is set to 300 seconds.

Figure 2(a) compares the CO2 concentration variations within one day by
three different control methods. The black line is the occupant number change
during this period of time. The result indicates that the CO2 concentration can
be unnecessarily reduced far below 800 ppm by On/Off control, which simply
turns on the fan with maximum power if any occupants are detected in the
room while turns off if not. Although it can provide continuously fresh air flow,
it consumes much more energy than the others. PI control (proportional gain:
0.003, integral gain: 0.000001) can keep the CO2 concentration at the setpoint
smoothly, except for every change of number of occupant’s presence, which causes
the overshoot of the concentration. RL method can offer the best comfort, even
though the CO2 concentration has small vibration, that is caused by the discrete
definition of actions and occurs often in RL applications. For residential build-
ings, this slight fluctuation will not affect inhabitants’ comfort. The comparison
of ventilation rates is presented in Figure 2(b). It reflects that when there are
more occupants in the room, the quicker dynamic of physical environment makes
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Fig. 2. Experimental Results

it more challenging for RL to control. The total energy spent is 0.1379 kWh/day
by PI control, 0.1403 kWh/day by RL, and 0.6401 kWh/day by On/Off control.
Compared with On/Off control, RL can save 78.08% energy, and compared with
PI control, although RL use 1.74% more energy, it is not only able to maintain
good indoor air quality but also more suitable and feasible for implementing
CPSs in smart buildings.

7 Conclusion

In this paper, we identified the system requirements for smart buildings, includ-
ing multi-authority and multi-level, multi-objective, heterogeneity, scalability,
and incremental change. Then we presented the framework of Reinforcement
Learning and explained why RL is suitable to resolve most of the smart building
challenges. After that, a subsystem, specifically a ventilation system, was inves-
tigated and modeled by a CPS approach. The experimental results revealed that
Q-Learning, a model-free online RL technique, is more adaptable and feasible
than conventional PI and On/Off approaches for managing a ventilation system
in a smart building to improve comfort level while reduce energy consumption.

In the future, function approximation will be utilized, since there are more in-
formation (input variables) available for CPSs and often these input variables are
continuous, so it will not be applicable to discretize them anymore. In addition,
various RL techniques will be compared and analyzed to find their applicabil-
ity for smart building management. After that, different subsystems in smart
buildings will be integrated together based on Multi-agent System approach.
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Abstract. In this work, we propose a framework for classifier selec-
tion and fusion. Our method seeks to combine image characterization
and learning methods by means of a meta-learning approach responsible
for assessing which methods contribute more towards the solution of a
given problem. The framework uses three different strategies of classi-
fier selection that pinpoint the less correlated, yet effective, classifiers
through a series of diversity measure analysis. The experiments show
that the proposed approaches yield comparable results to well-known al-
gorithms from the literature on many different applications but using less
learning and description methods as well as not incurring in the curse of
dimensionality and normalization problems common to some fusion tech-
niques. Furthermore, our approach yields effective classification results
using very reduced training sets.

Keywords: meta-learning; diversity measure; rank aggregation; kendall
correlation

1 Motivation

The huge amount of visual data created through the popularization of mobile de-
vices (e.g., cell phone, camera, and tablet), makes us face many new challenges
unthinkable two decades ago. Image and video classification tasks have been
inserted in different and complex applications and the use of machine learning-
based solutions has become the most popular approach to several applications.
However, there is no single solution (learning or extraction technique) that solves
all the problems. Depending on the extraction and learning methods used might
create different classifiers that provide complementary information. One common
strategy that has been used to take advantage of these complementary informa-
tion and improve classification results is the Multiple Classifier System (MCS). In
MCS, the diversity of classifiers is an essential factor to reach better effectiveness

? The author thank São Paulo Research Foundation - FAPESP (grant 2010/14910-0)
2010-2014 and CAPES (grant 1260-12-0) for the financial support.
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2 A Framework for Pattern Classifier Selection and Fusion

results [17]. Diversity measures assess the degree of agreement/disagreement be-
tween classifiers and might identify potential classifiers for fusion. In this sense,
Kuncheva and Whitaker [18] studied different diversity measures as well as dis-
cussed their impacts on the final accuracy of ensemble systems. Different works
have been using diversity measures to select appropriate high-performance clas-
sifiers, but the challenge of finding the optimal number of classifiers for a target
task has not been properly addressed yet. In general, the proposed solutions rely
on the a priori use of ad hoc strategies for selecting classifiers, followed by the
evaluation of their effectiveness results during training. Searching by the optimal
number of classifiers, however, makes the selection process more expensive.

Currently, some of the most important challenges in MCS involve: choosing
the best diversity measure to be used; combining different available measures for
classifier selection in an ensemble system; and finding out whether or not the
existing measures describe the “real” diversity within the ensemble systems [4].
Typically, works in the literature have adopted a single diversity measure or
combined different measures using simple strategies (e.g., based on average of the
classification scores [5]). However, the aforementioned methods might not take
full advantage of the different opinions provided by all of the available diversity
measures. Moreover, another problem in MCS approaches is how to combine
different and non-correlated extraction and learning methods automatically.

In the literature, many works have been proposed to try sorting out problems
cited previously as for example, the well-known AdaBoost [13] and Bagging
[2] approaches. AdaBoost and Bagging ensemble approaches have been used
in several works in the literature due to their good results achieved in diverse
applications. However, previous work has also shown their limitations in terms
of efficiency, normalization, overfitting, and feature dimensionality problems.
In [21], for example, training time has been a concern when more features were
used to train an AdaBoost algorithm for face localization. The same problem
has been reported in [19], which trained an AdaBoost algorithm for tracking
indoor soccer players using videos. In [16], the authors discuss another problem:
the sensitivity of the classical AdaBoost algorithm to noisy datasets. They have
proposed different solutions to reduce the overfitting effect caused in those cases.
In [20], the authors discuss the problems of feature normalization in the context
of combining classifiers. More detail about tracking down fusion and classification
problems can be found in [6].

The combination of multiple feature vectors defined by different image de-
scriptors in AdaBoost and Bagging approaches is usually based on their concate-
nation (feature binding). Usually, when performing feature binding of different
nature/domain, normalization techniques should be applied to standardize all
feature values in the same range, which is a very challenging task [20]. Another
common problem faced when features are concatenated refers to the “curse of
dimensionality" [22]. The curse of dimensionality problem is related to the fact
that the dimension of the feature space increases in such a way that the available
training instances become indistinguishable and it is not enough for allowing the
definition of a good decision hyperplane [1].
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2 Objective and Contributions

In this work, we seek an alternative to AdaBoost and Bagging ensembles, which
might suffer curse of dimensionality and normalized problems. Our objective is
to propose a stacking framework, able to perform automatic fusion of different
visual properties (color, texture, and shape) and learning methods in existence
in the literature for different multimedia recognition tasks.

The framework assesses several descriptors and learning methods perform-
ing fusion in a final stage (late fusion) using a low-dimension feature vector
and simple (fast) classifiers. Another difference of the proposed method, when
compared to AdaBoost and Bagging techniques, is that the proposed framework
seeks greater diversity between the simple classifiers being able to choose only
the ones that effectively contribute to the solution of the classification problem
of interest.

Diversity may be obtained in different ways such as using: (a) different learn-
ing methods and the same training set; (b) the same learning method and dif-
ferent training samples; (c) different methods using different types of classifier
outcomes during the combination; and (d) predictions as new attributes to train
some learning method (meta-learning). In this work, we use two out of four ways
(a and d). We also use different visual properties (color, texture, and shape) to
each of the learning methods chosen to be simple classifiers. We follow the con-
cept that two instances of the same class have similar classification outputs for
the same set of classifiers [14].

In this regard, in this work, we investigate the combination of several learning
methods and image descriptors aiming at creating more effective classifiers. We
propose a framework for automatically combining the most discriminative clas-
sifiers using the support vector machine (SVM) technique, as well as exploring
the use of diversity measures to select the less-correlated, yet effective, classi-
fiers in three different selection strategies. We have performed experiments that
demonstrate that the proposed framework for classifier fusion yields comparable
results to the traditional fusion approaches but using less learning and descrip-
tion methods as well as not incurring in the curse of dimensionality problems,
which are common to some fusion techniques. Another major advantage of the
proposed method is that it yields good classification results using small training
examples being more robust to the small sample size problem common in many
classification techniques [1].

Our research hypothesis is that: Appropriate classifier selection approaches
can take advantage of classifier diversity to improve the accuracy performance
of multiple classifier systems.

The contributions and publications directly related to this thesis are: a frame-
work for classifier fusion through a meta-learning approach using Support Vector
Machines techniques [11]; a new classifier selection approach based on diversity
measures consensus [9,10]; a new classifier selection approach based on Kendall
correlation analysis [12]; and a new classifier selection approach based on rank
aggregation techniques [8]; a multimodal framework for automatic identification
of fruit flies (Diptera: Tephritidae) [7].
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4 A Framework for Pattern Classifier Selection and Fusion

3 The Classifier Fusion Framework

The objective of the fusion framework [10] is to exploit the degree of agree-
ment/disagreement among classifiers, concept known as diversity, to select the
most suitable ones to be used in a combination scheme.

Fig. 1: Framework for classifier selection and fusion [10]. The classifier selection process
is delimited by the dashed red line.

3.1 Formalization

Let C be the set of classifiers C = {c11, c12, . . . , c22, . . . , c|L||F|}, with cij = (li, fj),
where li is a learning method (e.g., Decision Tree, Naïve Bayes, kNN, etc.), and
fj is an image descriptor (e.g., Color Histogram). |C| = |L| × |F|, where L and
F are sets of available learning methods and image descriptors, respectively.
Initially, all classifiers ck ∈ C (1 < k ≤ |C|) are trained on a training set T . Next,
classifier results on a validation set V are computed and stored into a matrix
MV , where |MV | = |V | × |C| and |V | is the number of regions in a validation set
V . The actual classes of training and validation data points are known a priori.

The objective of our framework is to select a set C∗ ⊂ C of classifiers that
are good candidates to be combined. C∗ is determined by using MV as input
in an approach that exploits diversity measures (see Section 3.2). Note that C∗
can be used to compute a new matrix M∗V ⊂MV . Each selected classifier in C∗
is used to determine the class of an unknown instance. The outcomes of those
classifiers are later combined by a novel fusion technique (majority voting, SVM,
etc.), which is responsible for defining the class of the unknown instance. Fig. 1
illustrates the framework FSVM for combining classifiers.

3.2 Selection based on Consensus

Fig. 2 illustrates the adopted five-step approach for selecting classifiers based on
diversity measures, previously introduced in [10]. First, diversity measures (set
D in Fig. 2) are used to assess the degree of agreement among available classifiers
in C by taking into account the MV matrix previously computed. That step is
represented by arrow (a) in Fig. 2. Pairs of classifiers are then ranked according
to their diversity score. Each diversity measure defines a different ranked list
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and, at the end of this step, a set R of ranked lists is produced (arrow (b)). In
the following, a novel set of ranked lists Rt is computed by selecting the top
t pairs of classifiers from each ranked list in R (arrow (c)), and a histogram
H that counts the number of occurrences of a classifier in all ranked lists of
Rt is computed (arrow (d)). Finally, the most frequent classifiers in H, whose
accuracy is greater that a given threshold T , are combined by a fusion approach
(arrow (e)). T is a threshold defined in terms of the average accuracy among all
classifiers using the validation set V .

Fig. 2: The five steps for classifier selection are: (a) Computation of diversity measures
from the validation matrix MV ; (b) Ranking of pairs of classifiers by their diversity
measure scores; (c) Selection of the top t = 100 ranked pairs of classifiers; (d) Compu-
tation of a histogram H that counts the number of occurrences of each classifier; (e)
Selection of classifiers |C∗| based on their occurrence in H and on a defined threshold
T [10].

3.3 Selection based on Kendall Correlation

Let C be the set of classifiers created by the combination of learning methods
and image descriptors. Let P = {p1, p2, . . . , p|C×C|} be a set of all possible pairs
of classifiers, i.e., pl = (ci, cj), where (ci, cj) ∈ C × C. Let D = {d1, d2, . . . , d|D|}
be a set of diversity measures, such that each diversity measure dk ∈ D defines
a distance function ρ : P → R, where R denotes real numbers. Equations de-
scribed in paper [18] that define different criteria for implementing the function
ρ. Consider ρ(pl) ≥ 0 for all pl ∈ P and ρ(pl) = 0, with pl = (ci, cj), if ci = cj .
The distance ρ(pl) among all pairs of classifiers pl = (ci, cj) ∈ C × C can be
computed to obtain a |C| × |C| distance matrix A. Given a diversity measure
dk ∈ D, we can compute a ranked list Rdl

by taking into account the distance
matrix A. The ranked list Rdl

={p1, p2, . . . , p|C×C|} (where pl = (ci, cj) is a pair
of classifiers) can be defined as a permutation of the collection P, such that, if
pl is ranked at lower positions than pm, i.e., pl is ranked before pm, then ρ(pl)
< ρ(pm). In this way, pairs of classifiers are ranked according to their agreement
score defined in terms of a diversity measure.

We exploit the correlation of ranked lists of pairs of classifiers to select the
more appropriate ones to be combined. In this thesis, we use theKendall tau rank
correlation coefficient (τ) [15] to measure the degree of concordance between two
different ranked lists of the same set of observed samples. TheKendall correlation
τ(Rdi

,Rdj
) between two ranked lists Rdi

and Rdj
is defined in terms of the

number of concordant pairs NC in Rdi
and Rdj

, the number of discordant pairs
ND, and the number of positions n in the ranked lists.

We propose a novel strategy, named Kendall classifier selection (KCS), to
define appropriate classifiers to be used in the classification framework presented
in [10]. KCS makes use of the degree of agreement of different diversity measures.
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6 A Framework for Pattern Classifier Selection and Fusion

This agreement is measured in terms of the Kendall correlation among ranked
lists of classifiers.

Let dH1 and dH2 be the diversity measures with the highest correlation scores,
which are defined by the Kendall correlation. Let RdH1

and RdH2
be the ranked

lists of pairs of classifies defined by dH1
and dH2

, respectively. KCS defines the
top-ranked pairs of classifiers in RdH1

and RdH2
as the most appropriate ones to

be used in the classification framework presented in [10]. We also tested in our
experiments selected classifiers defined in terms of the lowest correlated diversity
measures (dL1 and dL2). In this case, we use classifiers defined in the top-ranked
positions of RdL1

and RdL2
.

Fig. 3: The six steps for new classifier selection are: (a) Compute diversity measures
from the validation matrix MV ; (b) Sort R lists by diversity measure scores; (c) Com-
pute Kendall correlation coefficients among all ranked lists of classifiers R; (d) Select
RdH1

and RdH2
or RdL1

and RdL2
ranked lists to be used in the next step; (e) Rt lists

with top t = 100; (f) Compute a histogram H that counts the number of occurrences of
each classifier; (g) Select the most appropriate classifiers |C∗| based on their occurrence
in H and a defined threshold T [12].

Figure 3 summarizes in six steps the new approach for selecting classifiers
based on Kendall correlation. It is important to highlight that all steps regarding
the selection of classifiers for fusion are performed during the training phase of
the decision-making framework. Using a validation set separated during training
allows us to evaluate different descriptors and learning techniques, assess their
outcomes when classifying the validation examples, and properly selecting, by
means of the proposed Kendall -based methodology, the most suitable classifiers
for deployment during testing.

3.4 Selection based on Rank Aggregation

We propose to use multiple diversity and evaluation measures (Kappa, Tau,
and accuracy) to determine which classifiers should be combined to improve the
classification results in a given problem. Recall that different diversity measures
would rank pairs of classifiers differently. In many situations, rank aggregation
methods have been used as a way of obtaining a consensus ranking when multiple
ranked lists are computed by different approaches. Rank aggregation has also
been treated as the task of combining different ranked lists (or scores) in order
to obtain a single, and more accurate, ranked list. For classification tasks, the
combination with the lowest error occurs when the classifiers being combined are
non-correlated (high diversity) and yields high accuracy rate [3]. In our approach,
each considered measure (both diversity and evaluation measures) produces a
ranked list of pairs of classifiers. A rank aggregation method combines all ranked
lists, producing a single combined ranked list, which is used to identify pairs of
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classifiers with good classification performance and high diversity. In the next
section, we formally define the proposed rank aggregation approach.

Figure 4 summarizes the six-step approach for selecting classifiers based on
rank aggregation.

Fig. 4: The six steps of the new classifier selection are: (a) Compute diversity mea-
sures from the validation matrix MV ; (b) Sort R lists according to scores of diversity
measures; (c) Compute rank aggregation using all ranked lists of classifiers (R) and
evaluation measures (E); (d) Create a single list Rt

c, which list has the top t = 100;
(e) Compute a histogram H that counts the number of occurrences of each classifier;
(f) Select the most appropriate classifiers |C∗| that satisfy a defined threshold T [8].

4 Experiments and Discussion

This section presents some of several experiments that we performed to evaluate
the robustness of our fusion framework with each selection process [8, 10,12].

4.1 Effectiveness Analysis

In these experiments, six fusion techniques were compared: our approach using
SVM (FSVM-PK-49) considering |C| = 49, two Adaboost approaches (BOOST-
DEFAULT and BOOST-49), Bagging (BAGG-49), and Majority Voting (MV-
49). Recall that using |C| = 49 means that all available classifiers (7 learning
methods × 7 image descriptors) are employed in the fusion process. FSVM-
PK means the SVM technique uses a polynomial kernel to combine different
simple classifiers in our approach. Furthermore, we have included the best single
classifier (no fusion) between all tested learning methods.

Table 1 presents the results obtained for each fusion technique and the best
single classifier using one of four datasets considered in the work and consider-
ing three different evaluation measures (Accuracy, Kappa, and Tau). Notice that
BOOST and BAGG techniques show up with the suffix ALL, which means the
concatenation of the feature vectors produced by the seven different image de-
scriptors considered. Thus BAGG-49-ALL and BOOST-49-ALL techniques refer
to the use of 49 iterations and seven image descriptors (hybrid fusion).

In these experiments, our late fusion approach (FSVM-PK-49), which uses
meta-learning on the outputs of all available classifiers yielded a slightly better
classification result considering the three evaluation measures, when compared
to other techniques in any tested datasets. However, the achieved results when
considering the selection of the most appropriate descriptors and learning meth-
ods automatically during the fusion process are more interesting.
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8 A Framework for Pattern Classifier Selection and Fusion

Important to note that BOOST and BAGG techniques use a fusion hybrid
(feature and decision level fusion) to achieve similar results to our framework
that uses only decision level fusion. We also computed the confidence intervals
to verify if the results obtained by the proposed framework differ from those
observed for the baselines. We could observe that FSVM-PK-49 has no statistical
difference between the best baseline in the Caltech dataset. Furthermore, our
late fusion approach (FSVM-PK-49) achieves similar results to BOOST-49-ALL
(hybrid fusion).

Dataset Techniques Measures
Accuracy Kappa TAU

Caltech

FSVM-PK-49 47.05%±1.77 0.45±0.02 0.46±0.02
BOOST-49-ALL 46.90%±0.63 0.45±0.01 0.46±0.01
BAGG-49-ALL 43.01%±1.38 0.41±0.01 0.42±0.01
SVM-PK-LAS 41.30%±0.41 0.39±0.00 0.40±0.00
MV-49 41.02%±0.46 0.38±0.00 0.40±0.00
BOOST-DEFAULT-ALL 39.92%±0.57 0.38±0.01 0.39±0.01

Table 1: Classification effectiveness of the proposed framework and baselines [10].

4.2 Training Set Size Impact

This section shows a behavioral study among the classifiers compared in Table 1
using reduced training sets. In our experiments, we conducted a study consider-
ing five different sizes for the training set (T ): 8%, 16%, 33%, 67%, 100%, which
represents 5%, 10%, 20%, 40% and 60% of the entire datasets, respectively. These
subsets have been selected from original training set. We use again the 5-fold
cross-validation protocol previously adopted in our experiments.

Fig. 5 shows the results for one of four datasets (Caltech) used in our work.
The x-axis denotes the number of images in the training set and the y-axis
represents the average accuracy in the testing set. The FSVM-PK-49 approach
using a subset of 8% of training set achieves 39.52% of accuracy. In the same
training set, BOOST-49-ALL yields 32.33%, which means that our approaches
have a gain of more than 19% compared to the best baseline. In the subset
16%, our approaches are still better and achieve accuracy results of 40.67%
(FSVM-PK-49) against 37.24% of the BOOST-49-ALL. That represents a gain
of more than 7% in classification accuracy. From the subset 33% to 100%, the
best baseline yields similar performance to our approach. In summary, we can
see that the proposed approach are able to learn from small training sets.

4.3 Classifier Selection Approaches

This section discusses the results regarding the effectiveness and efficiency of
the proposed framework using one of the two different datasets performed in
our work. In this case, the Urban dataset has been used. In our experiments,
we have used Double-Fault Measure (DFM), Q-Statistic (QSTAT ), Interrater
Agreement k (IA), Correlation Coefficient ρ (COR), and Disagreement Measure
(DM). Our framework is denoted as FSVM-NORM-|C∗|, where NORM means
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the normalized polynomial SVM kernel used in our experiments and |C∗| is num-
ber of simple classifiers that will be combined by the SVM-based meta-learning
technique.

Table 2 shows the average kappa indices for all performed experiments with
Urban dataset. The columns refer to the number of classifiers |C∗|, which have
values range from 5 to 36, where 5 is the lowest number of classifiers selected
and 36 is the total amount of possible classifiers that can be selected (six image
descriptors and six learning methods result in 36 different simple classifiers).

In these experiments, we compare three selection strategies: Consensus,Kendall,
and Rank Aggregation. Consensus refers to the strategy described in Section 3.2,
which uses all the five diversity measures in the selection process. Kendall, in
turn, refers to the strategy described in Section 3.3, which uses the two less
correlated diversity measures (in the case, IA and QSTAT ) in the selection pro-
cess. These diversity measures were defined according to an a priori correlation
analysis. Finally, Rank Aggregation refers to the use of the rank aggregation
strategy described in Section 3.4. In Table 2, we highlight in blue the number
minimum of classifier that each approach needs to achieve similar result than
the FSVM-NORM-|C∗| using all classifiers (|C∗| = 36). Consensus approach
need to use |C∗| = 15 classifiers. Kendall approach achieves similar result using
|C∗| = 10 classifiers. Finally, the rank aggregation approach with configura-
tion Kappa+DFM+IA+QSTAT is able to yield very effective results with only
|C∗| = 5 classifiers.

We also computed the confidence intervals to verify if the results obtained
by the proposed fusion approach differ from those observed for the baselines.
We could observe that our approach achieves similar results to those observed
for almost all baselines compared, but with fewer classifiers. Please, refer to the
associated thesis1 for more details regarding performed experiments.
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Fig. 5: Accuracy scores of all classifiers us-
ing training sets with different sizes [10].

Urban Dataset

Approaches Number of Classifiers |C∗|
5 10 15 36

Consensus [10] 0.564 0.570 0.594 0.612
Kendall [12] 0.566 0.592 0.604 0.612
Rank Agg. [8] 0.593 0.592 0.602 0.612

Table 2: Kappa indices computed for each
selection approach using different number
of classifiers (|C∗|) in the Urban dataset.

5 Conclusion

This work presented a framework for selection and fusion of simple classifiers
using diversity measures and meta-learning on top of classifier outcomes. The
1 www.ic.unicamp.br/~ffaria/ffaria_final_thesis.pdf
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10 A Framework for Pattern Classifier Selection and Fusion

main novelty of this work relies on the use of diversity measures to determine
which learning and image descriptor methods are more suitable to be combined
in a given classification problem. Thus, three different strategies for classifier
selection have been proposed (Consensus, Kendall correlation, and Rank Ag-
gregation). This work resulted in papers in three important international jour-
nals [7,8,10] and three conference papers [9,11,12]. In addition, two articles have
been submitted to international journals.For future work, we plan to investigate
additional strategies and metrics for improving the classifier selection process,
find the optimal diversity measures set for each application, test non-pairwise
diversity measures, and perform experiments in other application domains.
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Abstract.Finding people with similar skills within a domain may provide an 

important support for managing research centers. The academic production, al-

beit in an unstructured format, is easily accessible. Thus, we resort to sources 

on the web - academic and bibliographic databases - to uncover the affinities 

among researchers. What interests us most are affinities that are not yet evi-

denced by co-authorship. Besides, of interest are also other outputs of the me-

thod in the form of subgroups and the researchersthat play an important role in 

them. 

Keywords:Web Mining, Text mining, Clustering, Social Network Analysis, 

Differential Analysis of Graphs. 

1 Introduction 

Researchers seek to discover other researchers with similar interests to follow their 

work and plan future collaborations. At management level, it enables identifying suit-

able researchers for a given task, which precedes the implementation of partnerships 

with other institutions and researchers policies. Another advantage of this analysis is 

that it goes beyond the formal hierarchical framework within the organization, there-

by revealing its unknown connections that can be followed up. 

 

The main scientific contribution is beyond re-using standard techniques of text mining 

to bibliographic databases, but rather using these techniques to obtain two kinds of 

graphs, co-authorship and affinity graphs, and exploring a differential analysis with 

the aim of identifying new useful knowledge. 

 

Our aim is to focus on affinity analysis between certain research centers for various 

reasons: First, the outcome of the study may be useful to these centers. It may propose 

that certain collaborations be initiated. Besides, the outcomes of automatic analysis 

may be easily verified by some members of these centers. This research could be 

extended later to cover a larger set of centers. 

 

Regarding the discovery of similarities between researchers, Price et al. (2010) devel-

oped a methodology for the Web, called SubSift, establishing profiles for researchers 
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on the basis of researchers’ publications. Based on these profiles, a typical Informa-

tion Retrieval task is performed aiming to compare the papers submitted to a scientific 

conference (playing the role of Query in IR) with different profiles, in order to optim-

ize the task of distributing articles to review. 

 

Rogosky and Goldstone (2002) have pointed out that, in the context of a conceptual 

network, the meaning of a concept - here “researcher” - depends on the relationship 

with the other concepts in the conceptual framework. Thus we analyze networks of 

affinities and of particular interest are those that are not covered by the simple co-

authorship connections. To uncover these we have to resort to many different tech-

niques, including web mining, text mining, social network analysis, sub-graph dis-

covery and differential analysis of graphs and graph analysis. 

 

The main steps of the method are described in the following. 

2 Methodology 

This section presents the main steps undertaken to uncover the unknown information 

regarding affinities. The method involves the following steps: 

1. Query user to obtain names of institutions and websites; 
2. Web mining to identify researchers’ names; 

3. Web / Text mining to process researchers’ publications; 

4. Elaboration of similarity matrix and visualization using graphs;  
5. Application of sub-group discovery to the affinity graph; 
6. Elaboration of a co-authorship graphs and differential analysis of graphs; 
7. Identification of important nodes (researchers) in the graph. 

The details about all these steps are given in the following. 

2.1 Query user to obtain names of institutions 

So far, our work is in a prototype stage and so we have applied the method to two 

closely related R&D units, INESC TEC[1] – LIAAD [2] and CRACS [3]. The total 

number of researchers does not exceed several dozen. Our plan is to apply the method 

to larger set of units in future, such as the whole INESC or some Faculties of the Uni-

versity of Porto or other Universities. 

2.2 Web mining to identify researchers’ names 

Each research institution has normally a webpage listing their researchers. Lists of 

researchers can be extracted easily by building an expression in the XPath query lan-

guage to obtain their names from the website. 
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Regarding tools to extract and process the data, we chose R with its tm package for 

part of text mining, the XML package for web mining, as well as igraph and sna 

packages for clustering and social network analysis. 

2.3 Web / Text mining to process researchers’ publications 

Each researcher name can be inserted in the search URL for the DBLP [4] which 

enables direct access to each researcher list of publications. The retrieval of publica-

tions can be done automatically, using XPath expressions. However, a problem of 

named entity identification arises here. This is because researchers may have several 

variants of their name. Thus several entries may exist in the bibliographic database for 

the same researcher, each associated with a particular variant of his/her name. Typi-

cally, one of the variants will appear on the institution site. This name may not match 

the name used in the bibliographic database. 

 

Another problem is that we may have several investigators with the same name in the 

bibliographic database. One of the techniques used by Bugla (2009) is the following. 

To determine whether a given publication of P in some bibliographic database should 

be attributed to person P’ on a given site, a check is made whether both (i.e. P and 

P’)have the same home institution.  

 

Regarding the particular bibliographic database, we have chosen DBLP, because it is 

an open and comprehensive bibliographic database in the field of computer science. 

Currently, we are considering to use Authenticus instead, as its designwas based on 

Bugla’s work within a project from the University of Porto, and has the advantage 

that it retrieves publications from several other bibliographic databases (incl. e.g. 

SCOPUS).  

 

The publications titles are extracted into plain text files, each representing a particular 

author. The text files are retrieved and preprocessed in the usual manner. We use 

BoWrepresentation, remove numbers, stop-words, punctuation and other spurious 

elements. After this task, the list of documents is transformed into a document-term 

vector representation with tf-idf weighting (Feldman and Sanger, 2007). 

2.4 Elaboration of similarity matrix and visualization using graphs 

The vector representation described in the previous step is used to generate the cosine 

similarity matrix. This matrix can be visualized in the form of a graph and is used as 

the basis for further processing. Fig. 2 shows an example of an affinity graph, where 

all links (similarities) below a given threshold have been considered irrelevant and 

hence removed. 
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2.5 Application of community discovery to the affinity graph 

After transforming the similarity matrix into a graph format, we use the community 

discovery algorithm called Walktrap (Pons and Latapy, 2006). This technique finds 

densely connected sub-graphs, also defined as communities, through random walks. It 

assumes that short random walks tend to stay in the same community.  

 

The hierarchical agglomerative approach is based on a measure of distance between 

vertices (node to node) and an example of the output of clustering can be visualized in 

the following figure (Fig. 1). An optimal level of modularity of the network, based on 

the weighted connections between internal and external community is used by the 

algorithm to identify non-hierarchic communities. In our example below, the method 

identified three communities, identified as L-ML, L-OR and Con the basis of data 

gathered in 2011. 

 

 

Fig.1.Dendrogram generated by the Walktrap clustering algorithm 

Different discovered communities can be superimposed on the graph. The result can 

be seen in Fig. 1, where different communities uncovered by the Walktrap have been 

identified by ellipses.  

 

The communities discovered correspond well to the organizational structure of the 

two studied entities. One of the interesting issues to study in the future is - what are 

the differences between the two organizational structures This differences can suggest 

that a possible re-organization could be considered by the management in future. 

 

The Researcher Affinity Network graph (Fig. 2) that was generated enables to per-

form a visual analysis ofrelationships between researchers. The thickness of the edges 
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represents the similarity weight between pairs of research

the number of publications

 

The same graph shows also several communities that were detected by Walktrap. 

Further analysis of the community structure is presented in section 2.7.

Fig.2.Researcher Affinity N

2.6 Elaboration of a co

The generation of the co

tween authors A and B is introduce

pers. After constructing the affinity graph (G1) and co

can proceed to the next step which involves

structing a graph that is basically a 

shows an example. 

represents the similarity weight between pairs of researchers. Node dimension 

number of publications at DBLP for each author.  

The same graph shows also several communities that were detected by Walktrap. 

the community structure is presented in section 2.7. 

nity Network with communities identified by the Walktrap algorithm

ration of a co-authorship graph and differential analysis of graphs

of the co-authorship graph is a relatively simple matter. A link b

tween authors A and B is introduced, if they are co-authors of at least one of the p

pers. After constructing the affinity graph (G1) and co-authorship graphs (G2), we 

to the next step which involves differential analysis. This involves co

structing a graph that is basically a difference between G1 and G2. The next figure 

ode dimension reflects 

The same graph shows also several communities that were detected by Walktrap. 

 

algorithm 

and differential analysis of graphs 

authorship graph is a relatively simple matter. A link be-

authors of at least one of the pa-

authorship graphs (G2), we 

differential analysis. This involves con-

difference between G1 and G2. The next figure 
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Fig.3. Example of differential analysis 

2.7 Identification of important nodes (researchers) in the graph. 

The affinity network enables to calculate certain measures of importance of the re-

searchers within their community and in the context of different communities. This 

involves, for instance, degree centralityand betweenness centrality among others 

(Wasserman and Faust, 1994).  

 

Some centrality measures can be computed to account for different weights of the 

connections, as shown in the table below. The degree centrality is based on the num-

ber of connections to a vertex. The betweenness centralityindicates the number of 

times a vertex joins two other vertices on the shortest path. The eigenvector centrality 

shows the importance of vertices that connect to a given vertex.  

 

Table 1 shows an example. The black marked cells indicate that the largest degree 

centrality is located in CRACS, while that the largest betweenness centrality belongs 

to a member of LIAAD (which was clustered with CRACS researchers), as noted in 

the previous figure visually. It also seems that, as pointed out by the eigenvector cen-

trality, the influence within the community from the most central authors in LIAAD is 

more tenuous than the influence of the most central authors in CRACS. 

 

L.PB L.RC L.AJ L.JG C.RR C.FS C.VSC 

Degree centrality 3.4 4.8 3.1 1.6 4 5.6 4.7 

Betweenness centrality  41 179 130 18 45 88 16 

Eigenvector centrality 0.07 0.37 0.06 0.06 0.38 0.45 0.44 

Table 1. Centrality measures for some of the most relevant researchers 

3 Conclusions and future work 

The current work explores Web/Text mining for matching researcher names with their 

publication titles. This permits to retrieve researchers’ publications and process the 

text files to construct a similarity matrix and a network of affinities.  
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Further processing leads to quite interesting results in the form of sub-graphs / com-

munities. These can be compared to the formal organization structure. Further work 

involves differential analysis of graphs on the basis of the affinity and co-authorship 

graphs. The resulting differential analysis enables to identify pairs of people that 

could potentially benefit from working together.  

 

In future work, we plan to design an adaptive method capable of retrieving research-

er’s names from sites with unknown format, or sites that may have altered the format.  

The method will rely on a fact that at least one researcher’s name is known. The 

HTML/XML source code of the page will be analyzed with the aim of identifying the 

researcher’s name there and elaborating a convenient Xpath expression leading to this 

name. The command will be adapted so as to be able to retrieve all researchers’ 

names.  

 

We also intend to process the abstracts and consider a substantially higher number of 

research centers and/or researchers representing some challenges to the process of 

clustering. To overcome these, we plan to use an incremental / data-streaming ap-

proach for this task(Gama et al., 2010). 

 

A validation step needsto be added to the methodology. A brief online survey will be 

carried out for the most central researchers about who could be their potential collabo-

rator. The outcome will be compared to the results of differential analysis. 

 

An important problem in the text mining phase is that researchers from different do-

mains use different vocabulary/terminology to describe the same things. This problem 

is difficult to overcome. We will try to use, as some others did, Wordnet and DBpedia 

(Leal et al, 2012) to identify synonyms and related words, although this may be hard-

er for some specific domains, which may require specific dictionaries. 

 

Regarding related management needs, we intend to go beyond similarity analysis and 

study the complementary analysis to uncover potential collaboration between differ-

ent individuals. The aim of this analysis would be to identify two or more researchers 

with complementary skills for a given task.  
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Abstract. Boolean Matrix Factorization (BMF) is an important tool in
data mining that in many cases allows to increase interpretability for bi-
nary data. In BMF one decomposes a given binary matrix into a Boolean
product of binary factors such that some cost function is minimized.
In this work we consider the description length of the data as the cost,
which has been proven effective in uncovering true structure of the data
and removing the noise. The argument is that structured data is easier
to compress than the noise, and hence simpler models should be favored.
We introduce a new BMF algorithm, that we call NASSAU, which traces
back its history and correct its earlier mistakes. As turned out in our
experiments, this approach performs reasonably well for both real-world
and synthetic data.

Keywords: Matrix factorization, Boolean matrices, MDL principle, Ran-
dom walks

1 Introduction

The amount of data that needs to be analyzed in today’s world is enormous,
rendering it impossible to explain it all without making simplifying assumptions.
Typically, we strive to find a comparatively small number of patterns that occur
in the data frequently and provide a good explanation for it.

Matrix factorization is a very common tool in data mining, allowing to ex-
tract a small number of frequent patterns. The matrix factorization problem is,
given a matrix, find its decomposition into two or more factors that satisfy some
constraints. Perhaps the most famous type of matrix factorization is the Singular
Value Decomposition (SVD) [2]. However, despite its many useful mathematical
properties, its results can sometimes be hard to interpret. For example, explain-
ing negative values in the factors of SVD might be a problem. A very common
approach to increase interpretability is to require the factors to have the same
type as the input data, like for example in Nonnegative Matrix Factorization
(NMF) [3], which restricts the factors to be nonnegative real matrices.

A special class of matrix decomposition is the Boolean Matrix Factorization
problem (BMF) [1]. In BMF both the input matrix and the factors are binary,
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and the matrix product is Boolean. The motivation for this is analogous to the
nonnegativity restriction in NMF – we force the factors to be binary because so
is the input, and Boolean product is natural on binary data. There are different
forms of BMF depending on the cost function used.

In this work we use the Minimum Description Length principle (MDL) [4],
which is very useful in tackling the problem of the trade-off between fitting the
data well and having a simple model. In general, the more complexity we allow
in the model, the better we can fit the data. However, having high model order
comes at the cost of fitting the noise.

In this paper we present NASSAU, a new BMF algorithm that is designed to
minimize the description length. Unlike the majority of the previously proposed
BMF algorithms, it can correct its previous mistakes. NASSAU is quite robust to
subtractive noise, which is especially beneficial for real-world data as in many
domains there could be zeros simply due to the lack of observation.

2 Related Work

In BMF one decomposes a given binary matrix into the Boolean product of two
binary matrices such that some cost is minimized. Perhaps the most intuitive
and frequently used scoring function is the one that counts how many 0 - 1
errors were made in the reconstructed data. This objective was used in one of
the first algorithms proposed for solving the BMF problem – Asso [1]. How-
ever, this is not the only reasonable choice for the cost function. For example,
Miettinen and Vreeken [5] suggested to use the description length of the data
as an alternative cost. In this case the problem becomes an application of the
Minimum Description Length principle (MDL) [4]. It postulates that one should
favor a model yielding the shortest description of the data. The intuition is that
structured data is much more easily compressible than noise, and thus models
providing shorter description of the data better capture its essence. In [5] the
authors combined the MDL principle with the Asso algorithm [1] to tackle the
model order selection problem in BMF. However, the Asso algorithm minimizes
the number of 0− 1 errors, and MDL was only run as a postprocessing step to
compare the results for different ranks and select the best one.

Lucchese, et al. [6] proposed an algorithm that they call PANDA+, which is
capable of optimizing with respect to several different objectives, including the
description length. However, they use a different encoding of the data than the
one considered in this work (for details see [6] and [5]). Also the way PANDA+

works is very different from our approach. In particular, it expects solid core
patterns is the data, which it then tries to extend.

PANDA+ is an extended version of PANDA algorithm, which was introduced in
the authors’ previous work [7].

Another area of research that has a strong link to BMF is tiling transaction
databases [13]. A tile is a submatrix consisting only of ones. The objective is
to cover as many ones as possible with tiles, without covering any zeros. The
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problem is similar to BMF in that the original data is covered with rank-1
matrices full of ones, but unlike BMF, covering zeros with ones is not allowed.

3 Notation

Let B ∈ {0, 1}n×k and C ∈ {0, 1}k×m. We denote by B ◦C the Boolean prod-
uct of matrices B and C. We will also require some notation for manipulating
rows and columns of matrices. For any matrix A, we denote its i-th row by Ai

and its j-th column by Aj . The matrix obtained by removing Aj (Aj) is de-
noted by A−j (A−j ). In addition, if A is of size n-by-m and there is a column
vector c of size n-by-1 and a row vector r of size 1-by-m, then we denote by

[A, c] and
[
A
r

]
matrices obtained by joining A with c and r respectively.

Let A ∈ Rn×m, B ∈ Rn×k, and C ∈ Rk×m be binary matrices, and let
〈B, C〉 be a Boolean decomposition of A. Then we call B and C factors of
this decomposition and for any 1 ≤ l ≤ k, the rank-1 matrix formed by the
vector pair 〈Bl, Cl〉, a block.

Let again 〈B, C〉 be a Boolean decomposition of a binary matrix A. We
denote by L(A,B,C) the description length of A with factors B and C.

4 BMF with MDL

In this work we study the Boolean Matrix Factorization problem with description
length as a scoring function. We start this section by introducing the Minimum
Description Length principle, which we then use to formulate the BMF problem.

4.1 Minimum Description Length (MDL) and encoding BMF

Following the MDL principle [4], we use the description length of the data as our
cost function. MDL is a formalization of the Occam’s razor, which states that
faced with two competing models that describe the data equally well, one should
choose the simpler one. In MDL the complexity of the model is expressed as the
code length needed for the lossless compression of the data with this model. It is
known [14] that structured data usually compresses much better than the noise,
which makes MDL a usefool tool for noise removal.

The idea to use MDL as a scoring function for BMF comes from [5], where
the authors introduces several possible encodings for the BMF problem. In this
work we use the encoding that was deemed the best in the above paper, which
the authors call data to model encoding. Here we will describe the main ideas
behind this encoding scheme. More detailed explanation can be found in [5].

Assume that we are given a binary n-by-m matrix A and its decomposition
A ≈ B ◦C, where B ∈ {0, 1}k×m and C ∈ {0, 1}k×m. The description length
of this factorization can be represented as follows

L(A,B,C) = α+ L(B,C) + L(A |B,C).
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Here α is a constant term that does not depend on a particular factorization
(see [5] for details on how it is computed), L(B,C) is the description length
of the model (factors B and C ) and L(A |B,C) is the description length
of the data (matrix A) given the model. L(B,C) can be split into two parts
L(B,C) = L(B) +L(C), where each summand corresponds to one factor. Each
column of B is independently encoded as a binary vector. Since there are

(
n
|Bi|
)

binary strings that have the same length and number of ones as Bi, it can now
be identified by two integers: one encoding the number of nonzero elements in
Bi, (maximum n ) and the other encoding the index of Bi among all binary
strings having the same profile (maximum

(
n
|Bi|
)

). Thus, encoding Bi requires

log n+ log
(

n
|Bi|
)

bits [5]. Since B has k column we have

L(B) = k log(n) +
k∑

i=1

log

(
n

|Bi|

)
. (1)

C can be encoded analogously to the above by encoding its rows as binary
strings.

It now remains to encode the description of the data given the model, or the
error matrix E = XOR(A,B ◦C).

It can be split it into positive and negative parts, E+ and E−, where E+
ij =

1 if and only if Aij > (B ◦C)ij and E−ij = 1 if and only if Aij < (B ◦C)ij
[5]. In order not to assume any structure in the error matrix, E+ and E− are
encoded as binary strings in the same way as columns of B. This yields

L(E+) = log(mn− |B ◦C|) + log

(
mn− |B ◦C|
|E+|

)

and

L(E−) = log(|B ◦C|) + log

(|B ◦C|
|E−|

)
.

4.2 Boolean Matrix Factorization (BMF)

In this work we study the following problem.

Definition (Boolean matrix factorization). Given a binary matrix A ∈
{0, 1}n×m, the Boolean Matrix Factorization (BMF) problem is to find binary
factor matrices B and C such that the total description length of the data
when represented as a Boolean product of B and C is minimized. We denote
the description length of a Boolean decomposition of matrix A into factors B
and C by L(A,B,C).

Note that a more traditional way of defining the BMF problem is to look
for a decomposition of a given rank (see e.g. [5]). We do not require the rank as
an input, but rather aim to find the best decomposition regardless of it, when
finding the right rank becomes a byproduct.
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5 Algorithm

In this section we present a new algorithm, which we call NASSAU (Algorithm
1), for solving the BMF problem. In a nutshell it works as follows: start with an
empty factorization, then iteratively add blocks until there is no more gain in
the description length, and then go through the earlier blocks and attempt to
improve them.

The basic building block for NASSAU is a routine called FindBlock (algorithm
3) which, given the input matrix A and current factors B and C , finds (ap-
proximately) an optimal block to be added to the factors. It requires a set of
candidate column vectors on the input, which it uses to start building potential
blocks to be added to the current factorization. It then chooses the one that
yields the best change to the description length. Subsection 5.3 describes this
process in detail.

We run FindBlock repeatedly until the description length does not decrease
anymore. Periodically we update all the blocks found up to this point to fix some
of the suboptimal decisions made in the past. This is done using the routine
CyclicUpdates (Algorithm 2), which goes though the current factors updating
one block at a time with FindBlock. Finally, when adding a new block does not
improve the cost, we already have a reasonable approximation of the optimal
rank of the data. Next, we run CyclicUpdates yet again to make final fixes to
the obtained blocks.

NASSAU accepts several parameters that control its execution. The first pa-
rameter t represents the initial temperature for the CyclicUpdates function
(it is explained in Subsection 5.2). It is updated using another parameter τ.
Parameter θ is used within FindBlock routine and is explained in Subsection
5.3. Finally, M determines how frequently we update current blocks.

5.1 Finding candidates

The candidate vectors for FindBlock are found using restarted random walks on
the bipartite graph corresponding to the input matrix. A restarted random walk
starts from a certain node in the graph and on each iteration either returns to the
origin with probability ε or visits one of the neighbors of the current node with
probability (1− ε)/d, where d is the number of neighbours. Candidate vectors
are then obtained by thresholding the stationary solution of the corresponding
Markov chain.

5.2 CyclicUpdates

CyclicUpdates is used in NASSAU to improve the found factors by backtracking
the decision history and updating previous blocks with FindBlock. The moti-
vation for this is that some of the blocks might have become redundant after
we have found new ones. Note that the objective is not strictly decreasing –
FindBlock is a heuristics and is not guaranteed to improve the current block.
However, we might still want to keep the update to avoid getting stuck in a local
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minimum. We apply a technique similar to simulated annealing – we always ac-
cept an update if it decreases the cost, otherwise we might still accept it with a
probability proportional to current temperature. This is different from the stan-
dard simulated annealing in that we use a deterministic approach to find the
next step and only use randomization to decide whether to actually apply it.

5.3 FindBlock

FindBlock finds one more block to be added to the current factorization. It
aims to minimize the number of 0 - 1 errors rather than the description length.
The reason why we use this objective is that direct rank-1 optimization of the
description length is a complicated task due to its complex nature, and 0 - 1
error proved to be a good proxy for it in these settings.

FindBlock starts with a set of candidate column vectors. For each candidate
it finds a corresponding row vector such that together they would form a good
block in terms of 0 - 1 error (line 9). Observe that once an elements has been cov-
ered, it does not matter if we cover it again. Hence, we should disregard already
covered elements when computing the score. This is done by introducing a bi-
nary weight matrix W (line 4) that has ones only at the positions corresponding
to not yet covered elements of A. Note that setting element cl = 1 corresponds
to using b to cover l-th column of A, whereas setting cl = 0 corresponds to
covering it with all zeros. FindBlock accepts parameter θ that controls when
the algorithm would cover a column of A with vector b. We set cl to 1 if and
only if using b to cover Al would result in an error that is better than the error
when using a vector of all zeros by a factor of at least θ. We then fix c and
find b in the same fashion (line 10). These alternating updates are repeated
until convergence conditions are satisfied. We then compare the blocks obtained
starting from different candidates and choose the one yielding the best cost.

6 Experiments

We performed synthetic and real-world tests with the proposed algorithm, and
compare it with two of the most successful BMF algorithms Asso [1] and PANDA+

[6]. In addition we ran the same experiments with a truncated version of the
NASSAU algorithm that does not perform updates to the found blocks (that is it
stops when adding blocks does not improve the score). This version is denoted
by NASSAUnc throughout this section.

6.1 Synthetic Data

We evaluated NASSAU, as well as its truncated form NASSAUnc, on synthetic data
and also compared the results to those of Asso [1] and PANDA+ [6] algorithms.
Asso depends on a user provided parameter to threshold the association matrix.
To obtain more accurate results, we ran it with the parameter ranging from 0
to 1 with step 0.05, and then chose the best solution.
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Algorithm 1 NASSAU

1: Input: matrix A ∈ {0, 1}n×m, 0 < t < 1, 0 < τ < 1, 0 < θ < 1, M > 0 – integer
2: Output: Factors B ∈ {0, 1}n×k and C ∈ {0, 1}k×m

3: function NASSAU(A, t, τ, θ, M)
4: Initialize: B ← 0n×0, C ← 00×m,
5: Candidates← GetCandidates(A) . Random walks.
6: [b, c]← FindBlock(A,B,C,Candidates, θ)
7: Bnew ← [B, b], Cnew ←

[
C
c

]

8: while L(A,Bnew,Cnew) < L(A,B,C) do
9: [b, c]← FindBlock(A,B,C,Candidates)

10: B ← Bnew, C ← Cnew
11: Bnew ← [B, b], Cnew ←

[
C
c

]

12: if M rounds since last update then
13: [Bnew,Cnew]← CyclicUpdates(A,Bnew,Cnew,Candidates, 0, θ)

14: while not converged do
15: [B,C]← CyclicUpdates(A,B,C,Candidates, t, θ)
16: t← t ∗ τ
17: return B, C

Algorithm 2 CyclicUpdates

1: Input: matrices A ∈ {0, 1}n×m, B ∈ {0, 1}n×k, C ∈ {0, 1}k×m, Candidates ∈
{0, 1}n×s, t > 0, 0 < θ < 1

2: Output: Factors Bbest ∈ {0, 1}n×k and Cbest ∈ {0, 1}k×m

3: function CyclicUpdates(A, B, C, Candidates, t, θ)
4: Bbest← B, Cbest← C
5: for l = 1 to k do
6: [b, c]← FindBlock(A,B−l, C−l, Candidates, θ)
7: Bnew ← [B−l, b], Cnew ←

[
C−l
c

]
. Replace current block.

8: d = L(A,Bnew,Cnew)
9: if d < L(A,B,C) then

10: B ← Bnew, C ← Cnew
11: else
12: B ← Bnew, C ← Cnew with probability t

13: if d < L(A,Bbest, Cbest) then
14: Bbest← B, Cbest← C

15: return Bbest, Cbest
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Algorithm 3 FindBlock

1: Input: matrices A ∈ {0, 1}n×m, B ∈ {0, 1}n×k, C ∈ {0, 1}k×m, Candidates ∈
{0, 1}n×s, 0 < θ < 1

2: Output: block 〈bbest, cbest〉 with bbest ∈ {0, 1}n×1 and cbest ∈ {0, 1}1×m

3: function FindBlock(A,B,C,Candidates, θ)
4: W ← 1−B ◦C . Weight matrix.
5: bbest← 0n×1, cbest← 01×m

6: for i = 1 to s do
7: b← Candidatesi . Initialize b with i-th candidate column.
8: repeat
9: c← row vector with cl = 1 iff

∑
Wjl=1

|Ajl − bj)| < θ
∑

Wjl=1

Ajl

10: b← column vector with bl = 1 iff
∑

Wlj=1

|Alj − cj | < θ
∑

Wlj=1

Alj

11: until stopping criteria are satisfied
12: if L(A, [B, b],

[
C
c

]
) < L(A, [B, bbest],

[
C

cbest

]
) then

13: bbest← b, cbest← c

14: return bbest, cbest

The experimental setup was as follows. We first generated random binary factors,
then multiplied them using the Boolean matrix product to obtain matrices of size
600 by 400 with inner dimension of 15 and density 0.08. Then after adding some
noise, we ran the algorithms on the noisy matrices and measured the obtained
description length.

Additive noise. The purpose of this test is to find how robust the algorithms
are to additive noise, that is when 0s are turned to 1s. We used various noise
levels, ranging from 0 to 60% with respect to the number of ones in the input
matrix. We also added a very low level (3%) of destructive noise, which was kept
constant throughout the test. The results are presented in Figure 1a.

Destructive noise. The varying destructive noise test has the identical
setup to the above , except that we now turn 1s to 0s. The level of noise is again
measured relative to the number of ones in the input data. Analogously to the
previous test, we added 3% of additive noise. The results are shown in Figure
1b.

From the plots it is obvious that Asso is more robust to additive noise than
other algorithms. On the other hand, NASSAU outperforms all other methods for
high levels of destructive noise. PANDA+ performs slightly worse than NASSAU for
the additive noise test. However, high levels of subtractive noise deteriorates its
results relatively quickly compared to other methods. Comparing performances
of NASSAU and its NASSAUnc, we see that while updates were clearly useful for
additive noise, in case of destructive noise the improvement was very small.

6.2 Real-World Data

We performed experiments on real-world datasets and compared the results of
NASSAU, NASSAUnc, Asso, and PANDA+ algorithms. We tested all the algorithms
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(a) Varying additive noise.
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(b) Varying destructive noise.

Fig. 1. Varying noise test. The vertical axis represents the obtained description length
and the horizontal axis stands for the level of noise. Markers represent the means over
10 instances and the error bars have width of twice the standard deviation.

on the following datasets: Paleo – fossil records1, Dialects – presence data of di-
alects across Finnish municipalities [9], [10], Newsgroups – an excerpt from the
20Newsgroups dataset2 containing news posts in a bag-of-words representation,
and Mammals – a presence data of different mammals within geographical areas
of 50×50 kilometers in Europe [8]. For Asso, same as in the synthetic experi-
ments, we chose the best scoring thresholding parameter. The obtained results
are collected in Table 1. It can be seen that NASSAU obtains lower costs than the
other two methods for all the datasets tested. A possible explanation for that
is that it is less vulnerable to destructive noise, which is very likely to occur in
many of the real-world datasets. For example in the Mammals dataset many of
0s could actually represent the fact that some species have not been observed in
some area due to, for instance low population, rather than the absence of this
species. In other words, in this case the data contains many false negatives, and
NASSAU is quite robust against them. Also for two out of four datasets updates
run by NASSAU gave it a substantial edge over its truncated form.

7 Conclusions

In this work we introduced a new algorithm for the BMF problem that di-
rectly optimizes the description length of the data. The algorithm we propose
is nonhierarchical and is capable of fixing errors it has previously made. Based
on experiments with both real-world and synthetically generated data, we can

1 NOW public release 030717, available at http://www.helsinki.fi/science/now/
[Fortelius et al. 2003].

2 http://people.csail.mit.edu/jrennie/20Newsgroups/
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Table 1. Comparison between the description length obtained for various real-world
datasets by Asso, PANDA+, NASSAU, and NASSAUnc algorithms.

Algorihtm Paleo Dialects Newsgroups Mammals

Asso 18556 209713 65955 215209
PANDA+ 19728 292120 67120 234710
NASSAU 17831 176017 65680 179939
NASSAUnc 17931 230120 66198 196970

conclude that is is competitive with the best existing BMF methods. In partic-
ular, it is very robust to high levels of destructive noise (more so than all other
methods that we tested). Moreover, it obtained better results on all real-world
experiments that we conducted.
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